Leighton Payne, Simon Jackson, Rafael Pinilla-Redondo
{"title":"细菌免疫中的超分子组装:一种新兴范式。","authors":"Leighton Payne, Simon Jackson, Rafael Pinilla-Redondo","doi":"10.1016/j.tim.2024.06.003","DOIUrl":null,"url":null,"abstract":"<p><p>The study of bacterial immune systems has recently gained momentum, revealing a fascinating trend: many systems form large supramolecular assemblies. Here, we examine the potential mechanisms underpinning the evolutionary success of these structures, draw parallels to eukaryotic immunity, and offer fresh perspectives to stimulate future research into bacterial immunity.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":"828-831"},"PeriodicalIF":14.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supramolecular assemblies in bacterial immunity: an emerging paradigm.\",\"authors\":\"Leighton Payne, Simon Jackson, Rafael Pinilla-Redondo\",\"doi\":\"10.1016/j.tim.2024.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study of bacterial immune systems has recently gained momentum, revealing a fascinating trend: many systems form large supramolecular assemblies. Here, we examine the potential mechanisms underpinning the evolutionary success of these structures, draw parallels to eukaryotic immunity, and offer fresh perspectives to stimulate future research into bacterial immunity.</p>\",\"PeriodicalId\":23275,\"journal\":{\"name\":\"Trends in Microbiology\",\"volume\":\" \",\"pages\":\"828-831\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tim.2024.06.003\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tim.2024.06.003","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Supramolecular assemblies in bacterial immunity: an emerging paradigm.
The study of bacterial immune systems has recently gained momentum, revealing a fascinating trend: many systems form large supramolecular assemblies. Here, we examine the potential mechanisms underpinning the evolutionary success of these structures, draw parallels to eukaryotic immunity, and offer fresh perspectives to stimulate future research into bacterial immunity.
期刊介绍:
Trends in Microbiology serves as a comprehensive, multidisciplinary forum for discussing various aspects of microbiology, spanning cell biology, immunology, genetics, evolution, virology, bacteriology, protozoology, and mycology. In the rapidly evolving field of microbiology, technological advancements, especially in genome sequencing, impact prokaryote biology from pathogens to extremophiles, influencing developments in drugs, vaccines, and industrial enzyme research.