D- 天门冬氨酸是一种对人体健康非常重要的氨基酸,它支持弯曲杆菌中多种细菌的厌氧呼吸。

IF 2.5 4区 生物学 Q3 MICROBIOLOGY
{"title":"D- 天门冬氨酸是一种对人体健康非常重要的氨基酸,它支持弯曲杆菌中多种细菌的厌氧呼吸。","authors":"","doi":"10.1016/j.resmic.2024.104219","DOIUrl":null,"url":null,"abstract":"<div><p>Despite being classified as microaerophilic microorganisms, most <span><span>Campylobacter</span></span> species can grow anaerobically, using formate or molecular hydrogen (H<sub>2</sub>) as electron donors, and various nitrogenous and sulfurous compounds as electron acceptors. Herein, we showed that both <span>l</span>-asparagine (<span>l</span>-Asn) and <span>l</span>-aspartic acid (<span>l</span>-Asp) bolster H<sub>2</sub><span>-driven anaerobic growth in several </span><span><em>Campylobacter</em></span> species, whereas the <span>d-</span><span><span>enantiomer form of both </span>asparagine (</span><span>d</span><span>-Asn) and aspartic acid (</span><span>d</span>-Asp) only increased anaerobic growth in <span><span>Campylobacter concisus</span></span> strain 13826 and <span><em>Campylobacter ureolyticus</em></span> strain NCTC10941. A gene annotated as <em>racD</em> encoding for a putative <span>d</span>/<span>l</span><span>-Asp racemase was identified in the genome of both strains. Disruption of </span><em>racD</em> in <em>Cc</em>13826 resulted in the inability of the mutant strain to use either <span>d-</span>enantiomer during anaerobic growth. Hence, our results suggest that the <em>racD</em> gene is required for campylobacters to use either <span>d</span>-Asp or <span>d</span>-Asn. The use of <span>d</span>-Asp by various human opportunistic bacterial pathogens, including <em>C. concisus</em>, <em>C. ureolyticus</em>, and also possibly select strains of <em>Campylobacter gracilis</em>, <span><span>Campylobacter rectus</span></span> and <em>Campylobacter showae</em>, is significant, because <span>d</span><span>-Asp is an important signal molecule for both human nervous and neuroendocrine systems. To our knowledge, this is the first report of pathogens scavenging a </span><span>d-</span><span>amino acid essential for human health.</span></p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"175 7","pages":"Article 104219"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"d-aspartate, an amino-acid important for human health, supports anaerobic respiration in several Campylobacter species\",\"authors\":\"\",\"doi\":\"10.1016/j.resmic.2024.104219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite being classified as microaerophilic microorganisms, most <span><span>Campylobacter</span></span> species can grow anaerobically, using formate or molecular hydrogen (H<sub>2</sub>) as electron donors, and various nitrogenous and sulfurous compounds as electron acceptors. Herein, we showed that both <span>l</span>-asparagine (<span>l</span>-Asn) and <span>l</span>-aspartic acid (<span>l</span>-Asp) bolster H<sub>2</sub><span>-driven anaerobic growth in several </span><span><em>Campylobacter</em></span> species, whereas the <span>d-</span><span><span>enantiomer form of both </span>asparagine (</span><span>d</span><span>-Asn) and aspartic acid (</span><span>d</span>-Asp) only increased anaerobic growth in <span><span>Campylobacter concisus</span></span> strain 13826 and <span><em>Campylobacter ureolyticus</em></span> strain NCTC10941. A gene annotated as <em>racD</em> encoding for a putative <span>d</span>/<span>l</span><span>-Asp racemase was identified in the genome of both strains. Disruption of </span><em>racD</em> in <em>Cc</em>13826 resulted in the inability of the mutant strain to use either <span>d-</span>enantiomer during anaerobic growth. Hence, our results suggest that the <em>racD</em> gene is required for campylobacters to use either <span>d</span>-Asp or <span>d</span>-Asn. The use of <span>d</span>-Asp by various human opportunistic bacterial pathogens, including <em>C. concisus</em>, <em>C. ureolyticus</em>, and also possibly select strains of <em>Campylobacter gracilis</em>, <span><span>Campylobacter rectus</span></span> and <em>Campylobacter showae</em>, is significant, because <span>d</span><span>-Asp is an important signal molecule for both human nervous and neuroendocrine systems. To our knowledge, this is the first report of pathogens scavenging a </span><span>d-</span><span>amino acid essential for human health.</span></p></div>\",\"PeriodicalId\":21098,\"journal\":{\"name\":\"Research in microbiology\",\"volume\":\"175 7\",\"pages\":\"Article 104219\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923250824000561\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923250824000561","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管弯曲杆菌被归类为嗜微气微生物,但大多数弯曲杆菌都能以甲酸或分子氢(H2)为电子供体,以各种含氮和含硫化合物为电子受体,进行厌氧生长。在本文中,我们发现 L-天冬酰胺(L-Asn)和 L-天冬氨酸(L-Asp)都能促进多种弯曲杆菌在 H2 驱动下的厌氧生长,而天冬酰胺(D-Asn)和天冬氨酸(D-Asp)的 D-对映体形式仅能增加 C. concisus 菌株 13826 和 C. ureolyticus 菌株 NCTC10941 的厌氧生长。在这两个菌株的基因组中都发现了一个被注释为 racD 的基因,该基因编码一种假定的 D/L-Asp 消旋酶。Cc13826 中 racD 的破坏导致突变菌株在厌氧生长过程中无法使用任何一种 D-对映体。因此,我们的研究结果表明,弯曲杆菌使用 D-Asp 或 D-Asn 都需要 racD 基因。由于 D-Asp 是人类神经系统和神经内分泌系统的重要信号分子,因此各种人类机会性细菌病原体(包括 C. concisus、C. ureolyticus 以及可能的 C. gracilis、C. rectus 和 C. showae 的特定菌株)使用 D-Asp 具有重要意义。据我们所知,这是首次报道病原体清除对人类健康至关重要的 D-氨基酸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
d-aspartate, an amino-acid important for human health, supports anaerobic respiration in several Campylobacter species

Despite being classified as microaerophilic microorganisms, most Campylobacter species can grow anaerobically, using formate or molecular hydrogen (H2) as electron donors, and various nitrogenous and sulfurous compounds as electron acceptors. Herein, we showed that both l-asparagine (l-Asn) and l-aspartic acid (l-Asp) bolster H2-driven anaerobic growth in several Campylobacter species, whereas the d-enantiomer form of both asparagine (d-Asn) and aspartic acid (d-Asp) only increased anaerobic growth in Campylobacter concisus strain 13826 and Campylobacter ureolyticus strain NCTC10941. A gene annotated as racD encoding for a putative d/l-Asp racemase was identified in the genome of both strains. Disruption of racD in Cc13826 resulted in the inability of the mutant strain to use either d-enantiomer during anaerobic growth. Hence, our results suggest that the racD gene is required for campylobacters to use either d-Asp or d-Asn. The use of d-Asp by various human opportunistic bacterial pathogens, including C. concisus, C. ureolyticus, and also possibly select strains of Campylobacter gracilis, Campylobacter rectus and Campylobacter showae, is significant, because d-Asp is an important signal molecule for both human nervous and neuroendocrine systems. To our knowledge, this is the first report of pathogens scavenging a d-amino acid essential for human health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research in microbiology
Research in microbiology 生物-微生物学
CiteScore
4.10
自引率
3.80%
发文量
54
审稿时长
16 days
期刊介绍: Research in Microbiology is the direct descendant of the original Pasteur periodical entitled Annales de l''Institut Pasteur, created in 1887 by Emile Duclaux under the patronage of Louis Pasteur. The Editorial Committee included Chamberland, Grancher, Nocard, Roux and Straus, and the first issue began with Louis Pasteur''s "Lettre sur la Rage" which clearly defines the spirit of the journal:"You have informed me, my dear Duclaux, that you intend to start a monthly collection of articles entitled "Annales de l''Institut Pasteur". You will be rendering a service that will be appreciated by the ever increasing number of young scientists who are attracted to microbiological studies. In your Annales, our laboratory research will of course occupy a central position, but the work from outside groups that you intend to publish will be a source of competitive stimulation for all of us."That first volume included 53 articles as well as critical reviews and book reviews. From that time on, the Annales appeared regularly every month, without interruption, even during the two world wars. Although the journal has undergone many changes over the past 100 years (in the title, the format, the language) reflecting the evolution in scientific publishing, it has consistently maintained the Pasteur tradition by publishing original reports on all aspects of microbiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信