Min Huang, Shuang Li, Hai Zeng, Yan Zhu, Fan Zhang, Jun Cai
{"title":"外泌体 miR-196a-5p 通过抑制 ITM2B 促进食管鳞状细胞癌的恶性发展。","authors":"Min Huang, Shuang Li, Hai Zeng, Yan Zhu, Fan Zhang, Jun Cai","doi":"10.1111/pin.13459","DOIUrl":null,"url":null,"abstract":"<p><p>Exosomes from cancer cells function as carriers to spread or transport specific microRNAs (miRNAs) to distant sites to exert their effects, but the mechanism of exosomal miRNA action in esophageal squamous cell carcinoma (ESCC) has not been fully explained. Therefore, in this study, we were interested in the impact of exosomal miR-196a-5p in ESCC progression. We found that miR-196a-5p was expressed enriched in clinical tissues, ESCC cells, and exosomes. Functionally, depletion of miR-196a-5p impeded ESCC cell growth, migration, and invasion, whereas overexpression of miR-196a-5p produced the opposite results. Moreover, enhancement of exosomal miR-196a-5p in recipient ESCC cells triggered more intense proliferation and migration. Mechanistically, we identified integral membrane protein 2B (ITM2B) as a direct target of miR-196a-5p. Silencing of ITM2B partially counteracted the inhibitory effect of miR-196a-5p inhibitors on the malignant phenotype of ESCC. Furthermore, in vivo, lower miR-196a-5p levels triggered by the introduction of antagomiR-196a-5p resulted in the generation of smaller volume and weight xenograft tumors. Thus, our results demonstrated novel mechanisms of exosomal and intracellular miR-196a-5p-mediated ESCC growth and migration and identify the interaction of miR-196a-5p with ITM2B. These works might provide new targets and basis for the development of clinical treatment options for ESCC.</p>","PeriodicalId":19806,"journal":{"name":"Pathology International","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exosomal miR-196a-5p contributes to esophageal squamous cell carcinoma malignant progression by inhibiting ITM2B.\",\"authors\":\"Min Huang, Shuang Li, Hai Zeng, Yan Zhu, Fan Zhang, Jun Cai\",\"doi\":\"10.1111/pin.13459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exosomes from cancer cells function as carriers to spread or transport specific microRNAs (miRNAs) to distant sites to exert their effects, but the mechanism of exosomal miRNA action in esophageal squamous cell carcinoma (ESCC) has not been fully explained. Therefore, in this study, we were interested in the impact of exosomal miR-196a-5p in ESCC progression. We found that miR-196a-5p was expressed enriched in clinical tissues, ESCC cells, and exosomes. Functionally, depletion of miR-196a-5p impeded ESCC cell growth, migration, and invasion, whereas overexpression of miR-196a-5p produced the opposite results. Moreover, enhancement of exosomal miR-196a-5p in recipient ESCC cells triggered more intense proliferation and migration. Mechanistically, we identified integral membrane protein 2B (ITM2B) as a direct target of miR-196a-5p. Silencing of ITM2B partially counteracted the inhibitory effect of miR-196a-5p inhibitors on the malignant phenotype of ESCC. Furthermore, in vivo, lower miR-196a-5p levels triggered by the introduction of antagomiR-196a-5p resulted in the generation of smaller volume and weight xenograft tumors. Thus, our results demonstrated novel mechanisms of exosomal and intracellular miR-196a-5p-mediated ESCC growth and migration and identify the interaction of miR-196a-5p with ITM2B. These works might provide new targets and basis for the development of clinical treatment options for ESCC.</p>\",\"PeriodicalId\":19806,\"journal\":{\"name\":\"Pathology International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathology International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/pin.13459\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/pin.13459","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
Exosomal miR-196a-5p contributes to esophageal squamous cell carcinoma malignant progression by inhibiting ITM2B.
Exosomes from cancer cells function as carriers to spread or transport specific microRNAs (miRNAs) to distant sites to exert their effects, but the mechanism of exosomal miRNA action in esophageal squamous cell carcinoma (ESCC) has not been fully explained. Therefore, in this study, we were interested in the impact of exosomal miR-196a-5p in ESCC progression. We found that miR-196a-5p was expressed enriched in clinical tissues, ESCC cells, and exosomes. Functionally, depletion of miR-196a-5p impeded ESCC cell growth, migration, and invasion, whereas overexpression of miR-196a-5p produced the opposite results. Moreover, enhancement of exosomal miR-196a-5p in recipient ESCC cells triggered more intense proliferation and migration. Mechanistically, we identified integral membrane protein 2B (ITM2B) as a direct target of miR-196a-5p. Silencing of ITM2B partially counteracted the inhibitory effect of miR-196a-5p inhibitors on the malignant phenotype of ESCC. Furthermore, in vivo, lower miR-196a-5p levels triggered by the introduction of antagomiR-196a-5p resulted in the generation of smaller volume and weight xenograft tumors. Thus, our results demonstrated novel mechanisms of exosomal and intracellular miR-196a-5p-mediated ESCC growth and migration and identify the interaction of miR-196a-5p with ITM2B. These works might provide new targets and basis for the development of clinical treatment options for ESCC.
期刊介绍:
Pathology International is the official English journal of the Japanese Society of Pathology, publishing articles of excellence in human and experimental pathology. The Journal focuses on the morphological study of the disease process and/or mechanisms. For human pathology, morphological investigation receives priority but manuscripts describing the result of any ancillary methods (cellular, chemical, immunological and molecular biological) that complement the morphology are accepted. Manuscript on experimental pathology that approach pathologenesis or mechanisms of disease processes are expected to report on the data obtained from models using cellular, biochemical, molecular biological, animal, immunological or other methods in conjunction with morphology. Manuscripts that report data on laboratory medicine (clinical pathology) without significant morphological contribution are not accepted.