Negin Farzad, Archibald Enninful, Shuozhen Bao, Di Zhang, Yanxiang Deng, Rong Fan
{"title":"通过组织中的 Tn5 转座和确定性 DNA 条形码进行空间分辨率表观基因组测序。","authors":"Negin Farzad, Archibald Enninful, Shuozhen Bao, Di Zhang, Yanxiang Deng, Rong Fan","doi":"10.1038/s41596-024-01013-y","DOIUrl":null,"url":null,"abstract":"Spatial epigenetic mapping of tissues enables the study of gene regulation programs and cellular functions with the dependency on their local tissue environment. Here we outline a complete procedure for two spatial epigenomic profiling methods: spatially resolved genome-wide profiling of histone modifications using in situ cleavage under targets and tagmentation (CUT&Tag) chemistry (spatial-CUT&Tag) and transposase-accessible chromatin sequencing (spatial-ATAC-sequencing) for chromatin accessibility. Both assays utilize in-tissue Tn5 transposition to recognize genomic DNA loci followed by microfluidic deterministic barcoding to incorporate spatial address codes. Furthermore, these two methods do not necessitate prior knowledge of the transcription or epigenetic markers for a given tissue or cell type but permit genome-wide unbiased profiling pixel-by-pixel at the 10 μm pixel size level and single-base resolution. To support the widespread adaptation of these methods, details are provided in five general steps: (1) sample preparation; (2) Tn5 transposition in spatial-ATAC-sequencing or antibody-controlled pA–Tn5 tagmentation in CUT&Tag; (3) library preparation; (4) next-generation sequencing; and (5) data analysis using our customed pipelines available at: https://github.com/dyxmvp/Spatial_ATAC-seq and https://github.com/dyxmvp/spatial-CUT-Tag . The whole procedure can be completed on four samples in 2–3 days. Familiarity with basic molecular biology and bioinformatics skills with access to a high-performance computing environment are required. A rudimentary understanding of pathology and specimen sectioning, as well as deterministic barcoding in tissue-specific skills (e.g., design of a multiparameter barcode panel and creation of microfluidic devices), are also advantageous. In this protocol, we mainly focus on spatial profiling of tissue region-specific epigenetic landscapes in mouse embryos and mouse brains using spatial-ATAC-sequencing and spatial-CUT&Tag, but these methods can be used for other species with no need for species-specific probe design. Deterministic barcoding in tissue allows the mapping of chromatin accessibility and histone modifications with high spatial resolution via next-generation sequencing. The method enables rapid identification of cell types and their spatial distribution.","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":"19 11","pages":"3389-3425"},"PeriodicalIF":13.1000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatially resolved epigenome sequencing via Tn5 transposition and deterministic DNA barcoding in tissue\",\"authors\":\"Negin Farzad, Archibald Enninful, Shuozhen Bao, Di Zhang, Yanxiang Deng, Rong Fan\",\"doi\":\"10.1038/s41596-024-01013-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial epigenetic mapping of tissues enables the study of gene regulation programs and cellular functions with the dependency on their local tissue environment. Here we outline a complete procedure for two spatial epigenomic profiling methods: spatially resolved genome-wide profiling of histone modifications using in situ cleavage under targets and tagmentation (CUT&Tag) chemistry (spatial-CUT&Tag) and transposase-accessible chromatin sequencing (spatial-ATAC-sequencing) for chromatin accessibility. Both assays utilize in-tissue Tn5 transposition to recognize genomic DNA loci followed by microfluidic deterministic barcoding to incorporate spatial address codes. Furthermore, these two methods do not necessitate prior knowledge of the transcription or epigenetic markers for a given tissue or cell type but permit genome-wide unbiased profiling pixel-by-pixel at the 10 μm pixel size level and single-base resolution. To support the widespread adaptation of these methods, details are provided in five general steps: (1) sample preparation; (2) Tn5 transposition in spatial-ATAC-sequencing or antibody-controlled pA–Tn5 tagmentation in CUT&Tag; (3) library preparation; (4) next-generation sequencing; and (5) data analysis using our customed pipelines available at: https://github.com/dyxmvp/Spatial_ATAC-seq and https://github.com/dyxmvp/spatial-CUT-Tag . The whole procedure can be completed on four samples in 2–3 days. Familiarity with basic molecular biology and bioinformatics skills with access to a high-performance computing environment are required. A rudimentary understanding of pathology and specimen sectioning, as well as deterministic barcoding in tissue-specific skills (e.g., design of a multiparameter barcode panel and creation of microfluidic devices), are also advantageous. In this protocol, we mainly focus on spatial profiling of tissue region-specific epigenetic landscapes in mouse embryos and mouse brains using spatial-ATAC-sequencing and spatial-CUT&Tag, but these methods can be used for other species with no need for species-specific probe design. Deterministic barcoding in tissue allows the mapping of chromatin accessibility and histone modifications with high spatial resolution via next-generation sequencing. The method enables rapid identification of cell types and their spatial distribution.\",\"PeriodicalId\":18901,\"journal\":{\"name\":\"Nature Protocols\",\"volume\":\"19 11\",\"pages\":\"3389-3425\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Protocols\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41596-024-01013-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41596-024-01013-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Spatially resolved epigenome sequencing via Tn5 transposition and deterministic DNA barcoding in tissue
Spatial epigenetic mapping of tissues enables the study of gene regulation programs and cellular functions with the dependency on their local tissue environment. Here we outline a complete procedure for two spatial epigenomic profiling methods: spatially resolved genome-wide profiling of histone modifications using in situ cleavage under targets and tagmentation (CUT&Tag) chemistry (spatial-CUT&Tag) and transposase-accessible chromatin sequencing (spatial-ATAC-sequencing) for chromatin accessibility. Both assays utilize in-tissue Tn5 transposition to recognize genomic DNA loci followed by microfluidic deterministic barcoding to incorporate spatial address codes. Furthermore, these two methods do not necessitate prior knowledge of the transcription or epigenetic markers for a given tissue or cell type but permit genome-wide unbiased profiling pixel-by-pixel at the 10 μm pixel size level and single-base resolution. To support the widespread adaptation of these methods, details are provided in five general steps: (1) sample preparation; (2) Tn5 transposition in spatial-ATAC-sequencing or antibody-controlled pA–Tn5 tagmentation in CUT&Tag; (3) library preparation; (4) next-generation sequencing; and (5) data analysis using our customed pipelines available at: https://github.com/dyxmvp/Spatial_ATAC-seq and https://github.com/dyxmvp/spatial-CUT-Tag . The whole procedure can be completed on four samples in 2–3 days. Familiarity with basic molecular biology and bioinformatics skills with access to a high-performance computing environment are required. A rudimentary understanding of pathology and specimen sectioning, as well as deterministic barcoding in tissue-specific skills (e.g., design of a multiparameter barcode panel and creation of microfluidic devices), are also advantageous. In this protocol, we mainly focus on spatial profiling of tissue region-specific epigenetic landscapes in mouse embryos and mouse brains using spatial-ATAC-sequencing and spatial-CUT&Tag, but these methods can be used for other species with no need for species-specific probe design. Deterministic barcoding in tissue allows the mapping of chromatin accessibility and histone modifications with high spatial resolution via next-generation sequencing. The method enables rapid identification of cell types and their spatial distribution.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.