在基于半金属电极的单分子光电器件中实现卓越的自旋过滤效应。

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Guojia Zhu, Weili Li, Yanning Zhang
{"title":"在基于半金属电极的单分子光电器件中实现卓越的自旋过滤效应。","authors":"Guojia Zhu, Weili Li, Yanning Zhang","doi":"10.1088/1361-648X/ad5d37","DOIUrl":null,"url":null,"abstract":"<p><p>The application of half-metallic materials in single-molecule optoelectronic devices opens a promising way in advancing device performance and functionality, thus addressing a research question of significance. Here we propose a series of single-molecule devices with half-metallic FeN<sub>4</sub>-doped armchair graphene nanoribbon as electrodes and metalloporphyrin (MPr) molecules as photoresponsive materials for photon harvesting, which are driven by photogalvanic effects (PGEs). Through the quantum transport simulations, we systematically investigated the spin-polarized photocurrents under the linearly polarized light illumination in these devices. Since the exclusive opening only exists in the spin-up channel of the half-metallic nanoribbons, these devices can generate a large photocurrent in the spin-up direction whereas suppressing the spin-down photocurrent. Consequently, they exhibit an effective spin-filtering effect at numerous photon energies. Our study unveils the excellent spin-filtering effect achieved in single-molecule optoelectronic devices with half-metallic electrodes, showing instructive significance for the future design of new optoelectronic devices.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of excellent spin-filtering effect in half-metallic electrode-based single-molecule optoelectronic devices.\",\"authors\":\"Guojia Zhu, Weili Li, Yanning Zhang\",\"doi\":\"10.1088/1361-648X/ad5d37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The application of half-metallic materials in single-molecule optoelectronic devices opens a promising way in advancing device performance and functionality, thus addressing a research question of significance. Here we propose a series of single-molecule devices with half-metallic FeN<sub>4</sub>-doped armchair graphene nanoribbon as electrodes and metalloporphyrin (MPr) molecules as photoresponsive materials for photon harvesting, which are driven by photogalvanic effects (PGEs). Through the quantum transport simulations, we systematically investigated the spin-polarized photocurrents under the linearly polarized light illumination in these devices. Since the exclusive opening only exists in the spin-up channel of the half-metallic nanoribbons, these devices can generate a large photocurrent in the spin-up direction whereas suppressing the spin-down photocurrent. Consequently, they exhibit an effective spin-filtering effect at numerous photon energies. Our study unveils the excellent spin-filtering effect achieved in single-molecule optoelectronic devices with half-metallic electrodes, showing instructive significance for the future design of new optoelectronic devices.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad5d37\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad5d37","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

半金属材料在单分子光电器件中的应用为提高器件性能和功能开辟了一条前景广阔的道路,从而解决了一个重要的研究问题。在此,我们提出了一系列以掺杂半金属 FeN4 的扶手石墨烯纳米带为电极、金属卟啉(MPr)分子为光致发光材料的单分子器件,这些器件在光电效应(PGEs)的驱动下进行光子收集。 通过量子输运模拟,我们系统地研究了这些器件在线性偏振光照射下的自旋偏振光电流。由于排他性开口仅存在于半金属纳米带的自旋上升通道中,因此这些器件可以在自旋上升方向产生大量光电流,同时抑制自旋下降光电流。因此,它们在许多光子能量下都能表现出有效的自旋过滤效应。我们的研究揭示了带有半金属电极的单分子光电器件所实现的卓越自旋过滤效应,对未来新型光电器件的设计具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of excellent spin-filtering effect in half-metallic electrode-based single-molecule optoelectronic devices.

The application of half-metallic materials in single-molecule optoelectronic devices opens a promising way in advancing device performance and functionality, thus addressing a research question of significance. Here we propose a series of single-molecule devices with half-metallic FeN4-doped armchair graphene nanoribbon as electrodes and metalloporphyrin (MPr) molecules as photoresponsive materials for photon harvesting, which are driven by photogalvanic effects (PGEs). Through the quantum transport simulations, we systematically investigated the spin-polarized photocurrents under the linearly polarized light illumination in these devices. Since the exclusive opening only exists in the spin-up channel of the half-metallic nanoribbons, these devices can generate a large photocurrent in the spin-up direction whereas suppressing the spin-down photocurrent. Consequently, they exhibit an effective spin-filtering effect at numerous photon energies. Our study unveils the excellent spin-filtering effect achieved in single-molecule optoelectronic devices with half-metallic electrodes, showing instructive significance for the future design of new optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信