{"title":"1,25-(OH)2D3通过抑制NLRP3/IL-1β和HIF-1α/IL-1β信号通路促进毛发生长。","authors":"","doi":"10.1016/j.jnutbio.2024.109695","DOIUrl":null,"url":null,"abstract":"<div><p>Vitamin D is a crucial vitamin that participates in various biological processes through the Vitamin D Receptor (VDR). While there are studies suggesting that VDR might regulate hair growth through ligand-independent mechanisms, the efficacy of Vitamin D in treating hair loss disorders has also been reported. Here, through <em>in vivo</em> experiments in mice, <em>in vitro</em> organ culture of hair follicles, and cellular-level investigations, we demonstrate that 1,25-(OH)<sub>2</sub>D<sub>3</sub> promotes mouse hair regeneration, prolongs the hair follicle anagen, and enhances the proliferation and migration capabilities of dermal papilla cells and outer root sheath keratinocytes in a VDR-dependent manner. Transcriptome analysis of VDR-knockout mouse skin reveals the involvement of HIF-1α, NLRP3, and IL-1β in these processes. Finally, we confirm that 1,25-(OH)<sub>2</sub>D<sub>3</sub> can counteract the inhibitory effects of DHT on hair growth. These findings suggest that 1,25-(OH)<sub>2</sub>D<sub>3</sub> has a positive impact on hair growth and may serve as a potential therapeutic agent for androgenetic alopecia (AGA).</p></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":"132 ","pages":"Article 109695"},"PeriodicalIF":4.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1,25-(OH)2D3 promotes hair growth by inhibiting NLRP3/IL-1β and HIF-1α/IL-1β signaling pathways\",\"authors\":\"\",\"doi\":\"10.1016/j.jnutbio.2024.109695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vitamin D is a crucial vitamin that participates in various biological processes through the Vitamin D Receptor (VDR). While there are studies suggesting that VDR might regulate hair growth through ligand-independent mechanisms, the efficacy of Vitamin D in treating hair loss disorders has also been reported. Here, through <em>in vivo</em> experiments in mice, <em>in vitro</em> organ culture of hair follicles, and cellular-level investigations, we demonstrate that 1,25-(OH)<sub>2</sub>D<sub>3</sub> promotes mouse hair regeneration, prolongs the hair follicle anagen, and enhances the proliferation and migration capabilities of dermal papilla cells and outer root sheath keratinocytes in a VDR-dependent manner. Transcriptome analysis of VDR-knockout mouse skin reveals the involvement of HIF-1α, NLRP3, and IL-1β in these processes. Finally, we confirm that 1,25-(OH)<sub>2</sub>D<sub>3</sub> can counteract the inhibitory effects of DHT on hair growth. These findings suggest that 1,25-(OH)<sub>2</sub>D<sub>3</sub> has a positive impact on hair growth and may serve as a potential therapeutic agent for androgenetic alopecia (AGA).</p></div>\",\"PeriodicalId\":16618,\"journal\":{\"name\":\"Journal of Nutritional Biochemistry\",\"volume\":\"132 \",\"pages\":\"Article 109695\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutritional Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955286324001281\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955286324001281","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
维生素 D 是一种重要的维生素,它通过维生素 D 受体(VDR)参与各种生物过程。有研究表明,VDR 可通过配体无关的机制调节毛发生长,但也有报道称维生素 D 可有效治疗脱发疾病。在这里,我们通过小鼠体内实验、毛囊体外器官培养和细胞水平研究证明,1,25-(OH)2D3能促进小鼠毛发再生,延长毛囊生长期,并以VDR依赖性方式增强真皮乳头细胞和外根鞘角质细胞的增殖和迁移能力。对 VDR 基因敲除小鼠皮肤的转录组分析表明,HIF-1α、NLRP3 和 IL-1β 参与了这些过程。最后,我们证实 1,25-(OH)2D3 可以抵消 DHT 对毛发生长的抑制作用。这些研究结果表明,1,25-(OH)2D3 对毛发生长有积极影响,可作为雄激素性脱发(AGA)的潜在治疗药物。
1,25-(OH)2D3 promotes hair growth by inhibiting NLRP3/IL-1β and HIF-1α/IL-1β signaling pathways
Vitamin D is a crucial vitamin that participates in various biological processes through the Vitamin D Receptor (VDR). While there are studies suggesting that VDR might regulate hair growth through ligand-independent mechanisms, the efficacy of Vitamin D in treating hair loss disorders has also been reported. Here, through in vivo experiments in mice, in vitro organ culture of hair follicles, and cellular-level investigations, we demonstrate that 1,25-(OH)2D3 promotes mouse hair regeneration, prolongs the hair follicle anagen, and enhances the proliferation and migration capabilities of dermal papilla cells and outer root sheath keratinocytes in a VDR-dependent manner. Transcriptome analysis of VDR-knockout mouse skin reveals the involvement of HIF-1α, NLRP3, and IL-1β in these processes. Finally, we confirm that 1,25-(OH)2D3 can counteract the inhibitory effects of DHT on hair growth. These findings suggest that 1,25-(OH)2D3 has a positive impact on hair growth and may serve as a potential therapeutic agent for androgenetic alopecia (AGA).
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.