Maxime Taverne, Laura Lalieve, Sylvain Persohn, Roman Hossein Khonsari, Giovanna Paternoster, Syril James, Thomas Blauwblomme, Sandro Benichi, Sébastien Laporte
{"title":"成人尸体颅颈交界处的解剖和活动性。","authors":"Maxime Taverne, Laura Lalieve, Sylvain Persohn, Roman Hossein Khonsari, Giovanna Paternoster, Syril James, Thomas Blauwblomme, Sandro Benichi, Sébastien Laporte","doi":"10.1002/jmor.21748","DOIUrl":null,"url":null,"abstract":"<p>Genetic diseases with craniofacial malformations can be associated with anomalies of the craniocervical joint (CCJ). The functions of the CCJ are thus impaired, as mobility may be either limited by abnormal bone fusion causing headaches, or exaggerated in the case of hypermobility, which may cause irreparable damage to the spinal cord<b>.</b> Restoring the balance between mobility and stability requires surgical correction in children. The anatomy and biomechanics of the CCJ are quite unique, yet have been overlooked in the past decades. Pediatric evidence is so scarce, that investigating the adult CCJ is our best shot to disentangle the form-function relationships of this anatomical region. The motivation of the present study was to understand the morphological and functional basis of motion in the CCJ, in the hope to find morphological features accessible from medical imaging able to predict mobility. To do so, we have quantified the in-vitro kinematics of the CCJ in nine cadaveric asymptomatic adults, and estimated a wide range of mobility variables covering the complexity of spinal motion. We compared these variables with the shape of the occipital, the atlas and the axis, obtained using a dense geometric morphometric approach. Morphological joint congruence was also quantified. Our results suggest a strong relationship between bone shape and motion, with the overall geometry predicting best the primary movements, and the joint facets predicting best the secondary movements. We propose a functional hypothesis stating that the musculoligamental system determines movements of great amplitude, while the shape and congruence of joint facets determine the secondary and coupled movements, especially by varying the geometry of bone stops and the way ligaments are tensioned. We believe this work will provide valuable insights in understanding the biomechanics of the CCJ. Furthermore, it should help surgeons treating CCJ anomalies by enabling them to translate objectives of functional and clinical outcome into clear objectives of morphological outcome.</p>","PeriodicalId":16528,"journal":{"name":"Journal of Morphology","volume":"285 7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmor.21748","citationCount":"0","resultStr":"{\"title\":\"Anatomy and mobility in the adult cadaveric craniocervical junction\",\"authors\":\"Maxime Taverne, Laura Lalieve, Sylvain Persohn, Roman Hossein Khonsari, Giovanna Paternoster, Syril James, Thomas Blauwblomme, Sandro Benichi, Sébastien Laporte\",\"doi\":\"10.1002/jmor.21748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Genetic diseases with craniofacial malformations can be associated with anomalies of the craniocervical joint (CCJ). The functions of the CCJ are thus impaired, as mobility may be either limited by abnormal bone fusion causing headaches, or exaggerated in the case of hypermobility, which may cause irreparable damage to the spinal cord<b>.</b> Restoring the balance between mobility and stability requires surgical correction in children. The anatomy and biomechanics of the CCJ are quite unique, yet have been overlooked in the past decades. Pediatric evidence is so scarce, that investigating the adult CCJ is our best shot to disentangle the form-function relationships of this anatomical region. The motivation of the present study was to understand the morphological and functional basis of motion in the CCJ, in the hope to find morphological features accessible from medical imaging able to predict mobility. To do so, we have quantified the in-vitro kinematics of the CCJ in nine cadaveric asymptomatic adults, and estimated a wide range of mobility variables covering the complexity of spinal motion. We compared these variables with the shape of the occipital, the atlas and the axis, obtained using a dense geometric morphometric approach. Morphological joint congruence was also quantified. Our results suggest a strong relationship between bone shape and motion, with the overall geometry predicting best the primary movements, and the joint facets predicting best the secondary movements. We propose a functional hypothesis stating that the musculoligamental system determines movements of great amplitude, while the shape and congruence of joint facets determine the secondary and coupled movements, especially by varying the geometry of bone stops and the way ligaments are tensioned. We believe this work will provide valuable insights in understanding the biomechanics of the CCJ. Furthermore, it should help surgeons treating CCJ anomalies by enabling them to translate objectives of functional and clinical outcome into clear objectives of morphological outcome.</p>\",\"PeriodicalId\":16528,\"journal\":{\"name\":\"Journal of Morphology\",\"volume\":\"285 7\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmor.21748\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Morphology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jmor.21748\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Morphology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmor.21748","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Anatomy and mobility in the adult cadaveric craniocervical junction
Genetic diseases with craniofacial malformations can be associated with anomalies of the craniocervical joint (CCJ). The functions of the CCJ are thus impaired, as mobility may be either limited by abnormal bone fusion causing headaches, or exaggerated in the case of hypermobility, which may cause irreparable damage to the spinal cord. Restoring the balance between mobility and stability requires surgical correction in children. The anatomy and biomechanics of the CCJ are quite unique, yet have been overlooked in the past decades. Pediatric evidence is so scarce, that investigating the adult CCJ is our best shot to disentangle the form-function relationships of this anatomical region. The motivation of the present study was to understand the morphological and functional basis of motion in the CCJ, in the hope to find morphological features accessible from medical imaging able to predict mobility. To do so, we have quantified the in-vitro kinematics of the CCJ in nine cadaveric asymptomatic adults, and estimated a wide range of mobility variables covering the complexity of spinal motion. We compared these variables with the shape of the occipital, the atlas and the axis, obtained using a dense geometric morphometric approach. Morphological joint congruence was also quantified. Our results suggest a strong relationship between bone shape and motion, with the overall geometry predicting best the primary movements, and the joint facets predicting best the secondary movements. We propose a functional hypothesis stating that the musculoligamental system determines movements of great amplitude, while the shape and congruence of joint facets determine the secondary and coupled movements, especially by varying the geometry of bone stops and the way ligaments are tensioned. We believe this work will provide valuable insights in understanding the biomechanics of the CCJ. Furthermore, it should help surgeons treating CCJ anomalies by enabling them to translate objectives of functional and clinical outcome into clear objectives of morphological outcome.
期刊介绍:
The Journal of Morphology welcomes articles of original research in cytology, protozoology, embryology, and general morphology. Articles generally should not exceed 35 printed pages. Preliminary notices or articles of a purely descriptive morphological or taxonomic nature are not included. No paper which has already been published will be accepted, nor will simultaneous publications elsewhere be allowed.
The Journal of Morphology publishes research in functional, comparative, evolutionary and developmental morphology from vertebrates and invertebrates. Human and veterinary anatomy or paleontology are considered when an explicit connection to neontological animal morphology is presented, and the paper contains relevant information for the community of animal morphologists. Based on our long tradition, we continue to seek publishing the best papers in animal morphology.