Qian Shi, Yalan Han, Jing Tian, Gang Huang, Limin Tian, Rui Qin, Jiancang Cao, Lianping Zhao
{"title":"成年甲状腺功能减退症患者低频波动分振幅的频率特异性变化","authors":"Qian Shi, Yalan Han, Jing Tian, Gang Huang, Limin Tian, Rui Qin, Jiancang Cao, Lianping Zhao","doi":"10.31083/j.jin2306111","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The neuropathophysiological mechanisms of brain damage underlying hypothyroidism remain unclear. Fractional amplitude of low-frequency fluctuations (fALFF) has been established as a reliable indicator for investigation of abnormal spontaneous brain activity that occurs at specific frequencies in different types of mental disorder. However, the changes of fALFF in specific frequency bands in hypothyroidism have not yet been investigated.</p><p><strong>Methods: </strong>Fifty-three hypothyroid patients and 39 healthy controls (HCs) underwent thyroid-related hormone levels tests, neuropsychological assessment, and magnetic resonance imaging (MRI) scans. The fALFF in the standard band (0.01-0.1 Hz), slow-4 (0.027-0.073 Hz), and slow-5 bands (0.01-0.027 Hz) were analyzed. An analysis of Pearson correlation was conducted between fALFF, thyroid-related hormone levels, and neuropsychological scores in hypothyroid patients.</p><p><strong>Results: </strong>Compared to HCs, within the routine band, hypothyroidism group showed significantly decreased fALFF in left lingual gyrus, middle temporal gyrus (MTG), precentral gyrus, calcarine cortex, and right inferior occipital gyrus; within the slow-5 band, the hypothyroidism group exhibited decreased fALFF in left lingual gyrus, MTG, superior temporal gyrus, postcentral gyrus, and paracentral lobule, and increased fALFF in supplementary motor area (SMA) and right middle frontal gyrus; additionally, fALFF in the left lingual gyrus within the routine and slow-5 bands were negatively correlated with the level of thyroid stimulating hormone.</p><p><strong>Conclusions: </strong>In this study, the slow-5 frequency band exhibits better sensitivity than the standard band in detecting fALFF values. A decrease of fALFF values in the lingual gyrus and MTG was observed in both the standard and slow-5 bands and might present potential neuroimaging biomarkers for hypothyroidism.</p><p><strong>Clinical trial registration: </strong>No: ChiCTR2000028966. Registered 9 January, 2020, https://www.chictr.org.cn.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"23 6","pages":"111"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency-Specific Alterations of Fractional Amplitude of Low-Frequency Fluctuations in Adult-Onset Hypothyroidism.\",\"authors\":\"Qian Shi, Yalan Han, Jing Tian, Gang Huang, Limin Tian, Rui Qin, Jiancang Cao, Lianping Zhao\",\"doi\":\"10.31083/j.jin2306111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The neuropathophysiological mechanisms of brain damage underlying hypothyroidism remain unclear. Fractional amplitude of low-frequency fluctuations (fALFF) has been established as a reliable indicator for investigation of abnormal spontaneous brain activity that occurs at specific frequencies in different types of mental disorder. However, the changes of fALFF in specific frequency bands in hypothyroidism have not yet been investigated.</p><p><strong>Methods: </strong>Fifty-three hypothyroid patients and 39 healthy controls (HCs) underwent thyroid-related hormone levels tests, neuropsychological assessment, and magnetic resonance imaging (MRI) scans. The fALFF in the standard band (0.01-0.1 Hz), slow-4 (0.027-0.073 Hz), and slow-5 bands (0.01-0.027 Hz) were analyzed. An analysis of Pearson correlation was conducted between fALFF, thyroid-related hormone levels, and neuropsychological scores in hypothyroid patients.</p><p><strong>Results: </strong>Compared to HCs, within the routine band, hypothyroidism group showed significantly decreased fALFF in left lingual gyrus, middle temporal gyrus (MTG), precentral gyrus, calcarine cortex, and right inferior occipital gyrus; within the slow-5 band, the hypothyroidism group exhibited decreased fALFF in left lingual gyrus, MTG, superior temporal gyrus, postcentral gyrus, and paracentral lobule, and increased fALFF in supplementary motor area (SMA) and right middle frontal gyrus; additionally, fALFF in the left lingual gyrus within the routine and slow-5 bands were negatively correlated with the level of thyroid stimulating hormone.</p><p><strong>Conclusions: </strong>In this study, the slow-5 frequency band exhibits better sensitivity than the standard band in detecting fALFF values. A decrease of fALFF values in the lingual gyrus and MTG was observed in both the standard and slow-5 bands and might present potential neuroimaging biomarkers for hypothyroidism.</p><p><strong>Clinical trial registration: </strong>No: ChiCTR2000028966. Registered 9 January, 2020, https://www.chictr.org.cn.</p>\",\"PeriodicalId\":16160,\"journal\":{\"name\":\"Journal of integrative neuroscience\",\"volume\":\"23 6\",\"pages\":\"111\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of integrative neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.31083/j.jin2306111\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of integrative neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/j.jin2306111","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Frequency-Specific Alterations of Fractional Amplitude of Low-Frequency Fluctuations in Adult-Onset Hypothyroidism.
Background: The neuropathophysiological mechanisms of brain damage underlying hypothyroidism remain unclear. Fractional amplitude of low-frequency fluctuations (fALFF) has been established as a reliable indicator for investigation of abnormal spontaneous brain activity that occurs at specific frequencies in different types of mental disorder. However, the changes of fALFF in specific frequency bands in hypothyroidism have not yet been investigated.
Methods: Fifty-three hypothyroid patients and 39 healthy controls (HCs) underwent thyroid-related hormone levels tests, neuropsychological assessment, and magnetic resonance imaging (MRI) scans. The fALFF in the standard band (0.01-0.1 Hz), slow-4 (0.027-0.073 Hz), and slow-5 bands (0.01-0.027 Hz) were analyzed. An analysis of Pearson correlation was conducted between fALFF, thyroid-related hormone levels, and neuropsychological scores in hypothyroid patients.
Results: Compared to HCs, within the routine band, hypothyroidism group showed significantly decreased fALFF in left lingual gyrus, middle temporal gyrus (MTG), precentral gyrus, calcarine cortex, and right inferior occipital gyrus; within the slow-5 band, the hypothyroidism group exhibited decreased fALFF in left lingual gyrus, MTG, superior temporal gyrus, postcentral gyrus, and paracentral lobule, and increased fALFF in supplementary motor area (SMA) and right middle frontal gyrus; additionally, fALFF in the left lingual gyrus within the routine and slow-5 bands were negatively correlated with the level of thyroid stimulating hormone.
Conclusions: In this study, the slow-5 frequency band exhibits better sensitivity than the standard band in detecting fALFF values. A decrease of fALFF values in the lingual gyrus and MTG was observed in both the standard and slow-5 bands and might present potential neuroimaging biomarkers for hypothyroidism.
期刊介绍:
JIN is an international peer-reviewed, open access journal. JIN publishes leading-edge research at the interface of theoretical and experimental neuroscience, focusing across hierarchical levels of brain organization to better understand how diverse functions are integrated. We encourage submissions from scientists of all specialties that relate to brain functioning.