Kishore Kukendrarajah, Aliki-Eleni Farmaki, Pier D Lambiase, Richard Schilling, Chris Finan, Amand Floriaan Schmidt, Rui Providencia
{"title":"优先考虑人类基因关联研究的结果,推进心房颤动药物的开发。","authors":"Kishore Kukendrarajah, Aliki-Eleni Farmaki, Pier D Lambiase, Richard Schilling, Chris Finan, Amand Floriaan Schmidt, Rui Providencia","doi":"10.1016/j.ebiom.2024.105194","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Drug development for atrial fibrillation (AF) has failed to yield new approved compounds. We sought to identify and prioritise potential druggable targets with support from human genetics, by integrating the available evidence with bioinformatics sources relevant for AF drug development.</p><p><strong>Methods: </strong>Genetic hits for AF and related traits were identified through structured search of MEDLINE. Genes derived from each paper were cross-referenced with the OpenTargets platform for drug interactions. Confirmation/validation was demonstrated through structured searches and review of evidence on MEDLINE and ClinialTrials.gov for each drug and its association with AF.</p><p><strong>Findings: </strong>613 unique drugs were identified, with 21 already included in AF Guidelines. Cardiovascular drugs from classes not currently used for AF (e.g. ranolazine and carperitide) and anti-inflammatory drugs (e.g. dexamethasone and mehylprednisolone) had evidence of potential benefit. Further targets were considered druggable but remain open for drug development.</p><p><strong>Interpretation: </strong>Our systematic approach, combining evidence from different bioinformatics platforms, identified drug repurposing opportunities and druggable targets for AF.</p><p><strong>Funding: </strong>KK is supported by Barts Charity grant G-002089 and is mentored on the AFGen 2023-24 Fellowship funded by the AFGen NIH/NHLBI grant R01HL092577. RP is supported by the UCL BHF Research Accelerator AA/18/6/34223 and NIHR grant NIHR129463. AFS is supported by the BHF grants PG/18/5033837, PG/22/10989 and UCL BHF Accelerator AA/18/6/34223 as well as the UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee EP/Z000211/1 and by the UKRI-NIHR grant MR/V033867/1 for the Multimorbidity Mechanism and Therapeutics Research Collaboration. AF is supported by UCL BHF Accelerator AA/18/6/34223. CF is supported by UCL BHF Accelerator AA/18/6/34223.</p>","PeriodicalId":11494,"journal":{"name":"EBioMedicine","volume":null,"pages":null},"PeriodicalIF":9.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260865/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancing drug development for atrial fibrillation by prioritising findings from human genetic association studies.\",\"authors\":\"Kishore Kukendrarajah, Aliki-Eleni Farmaki, Pier D Lambiase, Richard Schilling, Chris Finan, Amand Floriaan Schmidt, Rui Providencia\",\"doi\":\"10.1016/j.ebiom.2024.105194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Drug development for atrial fibrillation (AF) has failed to yield new approved compounds. We sought to identify and prioritise potential druggable targets with support from human genetics, by integrating the available evidence with bioinformatics sources relevant for AF drug development.</p><p><strong>Methods: </strong>Genetic hits for AF and related traits were identified through structured search of MEDLINE. Genes derived from each paper were cross-referenced with the OpenTargets platform for drug interactions. Confirmation/validation was demonstrated through structured searches and review of evidence on MEDLINE and ClinialTrials.gov for each drug and its association with AF.</p><p><strong>Findings: </strong>613 unique drugs were identified, with 21 already included in AF Guidelines. Cardiovascular drugs from classes not currently used for AF (e.g. ranolazine and carperitide) and anti-inflammatory drugs (e.g. dexamethasone and mehylprednisolone) had evidence of potential benefit. Further targets were considered druggable but remain open for drug development.</p><p><strong>Interpretation: </strong>Our systematic approach, combining evidence from different bioinformatics platforms, identified drug repurposing opportunities and druggable targets for AF.</p><p><strong>Funding: </strong>KK is supported by Barts Charity grant G-002089 and is mentored on the AFGen 2023-24 Fellowship funded by the AFGen NIH/NHLBI grant R01HL092577. RP is supported by the UCL BHF Research Accelerator AA/18/6/34223 and NIHR grant NIHR129463. AFS is supported by the BHF grants PG/18/5033837, PG/22/10989 and UCL BHF Accelerator AA/18/6/34223 as well as the UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee EP/Z000211/1 and by the UKRI-NIHR grant MR/V033867/1 for the Multimorbidity Mechanism and Therapeutics Research Collaboration. AF is supported by UCL BHF Accelerator AA/18/6/34223. CF is supported by UCL BHF Accelerator AA/18/6/34223.</p>\",\"PeriodicalId\":11494,\"journal\":{\"name\":\"EBioMedicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260865/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EBioMedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ebiom.2024.105194\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EBioMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ebiom.2024.105194","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Advancing drug development for atrial fibrillation by prioritising findings from human genetic association studies.
Background: Drug development for atrial fibrillation (AF) has failed to yield new approved compounds. We sought to identify and prioritise potential druggable targets with support from human genetics, by integrating the available evidence with bioinformatics sources relevant for AF drug development.
Methods: Genetic hits for AF and related traits were identified through structured search of MEDLINE. Genes derived from each paper were cross-referenced with the OpenTargets platform for drug interactions. Confirmation/validation was demonstrated through structured searches and review of evidence on MEDLINE and ClinialTrials.gov for each drug and its association with AF.
Findings: 613 unique drugs were identified, with 21 already included in AF Guidelines. Cardiovascular drugs from classes not currently used for AF (e.g. ranolazine and carperitide) and anti-inflammatory drugs (e.g. dexamethasone and mehylprednisolone) had evidence of potential benefit. Further targets were considered druggable but remain open for drug development.
Interpretation: Our systematic approach, combining evidence from different bioinformatics platforms, identified drug repurposing opportunities and druggable targets for AF.
Funding: KK is supported by Barts Charity grant G-002089 and is mentored on the AFGen 2023-24 Fellowship funded by the AFGen NIH/NHLBI grant R01HL092577. RP is supported by the UCL BHF Research Accelerator AA/18/6/34223 and NIHR grant NIHR129463. AFS is supported by the BHF grants PG/18/5033837, PG/22/10989 and UCL BHF Accelerator AA/18/6/34223 as well as the UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee EP/Z000211/1 and by the UKRI-NIHR grant MR/V033867/1 for the Multimorbidity Mechanism and Therapeutics Research Collaboration. AF is supported by UCL BHF Accelerator AA/18/6/34223. CF is supported by UCL BHF Accelerator AA/18/6/34223.
EBioMedicineBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
17.70
自引率
0.90%
发文量
579
审稿时长
5 weeks
期刊介绍:
eBioMedicine is a comprehensive biomedical research journal that covers a wide range of studies that are relevant to human health. Our focus is on original research that explores the fundamental factors influencing human health and disease, including the discovery of new therapeutic targets and treatments, the identification of biomarkers and diagnostic tools, and the investigation and modification of disease pathways and mechanisms. We welcome studies from any biomedical discipline that contribute to our understanding of disease and aim to improve human health.