Nicholas L. Balderston , Romain J. Duprat , Hannah Long, Morgan Scully, Joseph A. Deluisi, Almaris Figueroa-Gonzalez, Marta Teferi, Yvette I. Sheline, Desmond J. Oathes
{"title":"神经调节性经颅磁刺激(TMS)可改变功能连接,其改变程度与 TMS 脉冲诱导的电场成正比。","authors":"Nicholas L. Balderston , Romain J. Duprat , Hannah Long, Morgan Scully, Joseph A. Deluisi, Almaris Figueroa-Gonzalez, Marta Teferi, Yvette I. Sheline, Desmond J. Oathes","doi":"10.1016/j.clinph.2024.06.007","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Transcranial magnetic stimulation (TMS) can efficiently and robustly modulate synaptic plasticity, but little is known about how TMS affects functional connectivity (rs-fMRI). Accordingly, this project characterized TMS-induced rsFC changes in depressed patients who received 3 days of left prefrontal intermittent theta burst stimulation (iTBS).</p></div><div><h3>Methods</h3><p>rs-fMRI was collected from 16 subjects before and after iTBS. Correlation matrices were constructed from the cleaned rs-fMRI data. Electric-field models were conducted and used to predict pre-post changes in rs-fMRI. Site by orientation heatmaps were created for vectors centered on the stimulation site and a control site (contralateral motor cortex).</p></div><div><h3>Results</h3><p>For the stimulation site, there was a clear relationship between both site and coil orientation, and connectivity changes. As distance from the stimulation site increased, prediction accuracy decreased. Similarly, as eccentricity from the optimal orientation increased, prediction accuracy decreased. The systematic effects described above were not apparent in the heatmap centered on the control site.</p></div><div><h3>Conclusions</h3><p>These results suggest that rs-fMRI following iTBS changes systematically as a function of the distribution of electrical energy delivered from the TMS pulse, as represented by the e-field model.</p></div><div><h3>Significance</h3><p>This finding lays the groundwork for future studies to individualize TMS targeting based on how predicted rs-fMRI changes might impact psychiatric symptoms.</p></div>","PeriodicalId":10671,"journal":{"name":"Clinical Neurophysiology","volume":"165 ","pages":"Pages 16-25"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388245724001809/pdfft?md5=4b13ac20103c55eb506363d1c0f79f72&pid=1-s2.0-S1388245724001809-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Neuromodulatory transcranial magnetic stimulation (TMS) changes functional connectivity proportional to the electric-field induced by the TMS pulse\",\"authors\":\"Nicholas L. Balderston , Romain J. Duprat , Hannah Long, Morgan Scully, Joseph A. Deluisi, Almaris Figueroa-Gonzalez, Marta Teferi, Yvette I. Sheline, Desmond J. Oathes\",\"doi\":\"10.1016/j.clinph.2024.06.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>Transcranial magnetic stimulation (TMS) can efficiently and robustly modulate synaptic plasticity, but little is known about how TMS affects functional connectivity (rs-fMRI). Accordingly, this project characterized TMS-induced rsFC changes in depressed patients who received 3 days of left prefrontal intermittent theta burst stimulation (iTBS).</p></div><div><h3>Methods</h3><p>rs-fMRI was collected from 16 subjects before and after iTBS. Correlation matrices were constructed from the cleaned rs-fMRI data. Electric-field models were conducted and used to predict pre-post changes in rs-fMRI. Site by orientation heatmaps were created for vectors centered on the stimulation site and a control site (contralateral motor cortex).</p></div><div><h3>Results</h3><p>For the stimulation site, there was a clear relationship between both site and coil orientation, and connectivity changes. As distance from the stimulation site increased, prediction accuracy decreased. Similarly, as eccentricity from the optimal orientation increased, prediction accuracy decreased. The systematic effects described above were not apparent in the heatmap centered on the control site.</p></div><div><h3>Conclusions</h3><p>These results suggest that rs-fMRI following iTBS changes systematically as a function of the distribution of electrical energy delivered from the TMS pulse, as represented by the e-field model.</p></div><div><h3>Significance</h3><p>This finding lays the groundwork for future studies to individualize TMS targeting based on how predicted rs-fMRI changes might impact psychiatric symptoms.</p></div>\",\"PeriodicalId\":10671,\"journal\":{\"name\":\"Clinical Neurophysiology\",\"volume\":\"165 \",\"pages\":\"Pages 16-25\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1388245724001809/pdfft?md5=4b13ac20103c55eb506363d1c0f79f72&pid=1-s2.0-S1388245724001809-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Neurophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388245724001809\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388245724001809","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Neuromodulatory transcranial magnetic stimulation (TMS) changes functional connectivity proportional to the electric-field induced by the TMS pulse
Objective
Transcranial magnetic stimulation (TMS) can efficiently and robustly modulate synaptic plasticity, but little is known about how TMS affects functional connectivity (rs-fMRI). Accordingly, this project characterized TMS-induced rsFC changes in depressed patients who received 3 days of left prefrontal intermittent theta burst stimulation (iTBS).
Methods
rs-fMRI was collected from 16 subjects before and after iTBS. Correlation matrices were constructed from the cleaned rs-fMRI data. Electric-field models were conducted and used to predict pre-post changes in rs-fMRI. Site by orientation heatmaps were created for vectors centered on the stimulation site and a control site (contralateral motor cortex).
Results
For the stimulation site, there was a clear relationship between both site and coil orientation, and connectivity changes. As distance from the stimulation site increased, prediction accuracy decreased. Similarly, as eccentricity from the optimal orientation increased, prediction accuracy decreased. The systematic effects described above were not apparent in the heatmap centered on the control site.
Conclusions
These results suggest that rs-fMRI following iTBS changes systematically as a function of the distribution of electrical energy delivered from the TMS pulse, as represented by the e-field model.
Significance
This finding lays the groundwork for future studies to individualize TMS targeting based on how predicted rs-fMRI changes might impact psychiatric symptoms.
期刊介绍:
As of January 1999, The journal Electroencephalography and Clinical Neurophysiology, and its two sections Electromyography and Motor Control and Evoked Potentials have amalgamated to become this journal - Clinical Neurophysiology.
Clinical Neurophysiology is the official journal of the International Federation of Clinical Neurophysiology, the Brazilian Society of Clinical Neurophysiology, the Czech Society of Clinical Neurophysiology, the Italian Clinical Neurophysiology Society and the International Society of Intraoperative Neurophysiology.The journal is dedicated to fostering research and disseminating information on all aspects of both normal and abnormal functioning of the nervous system. The key aim of the publication is to disseminate scholarly reports on the pathophysiology underlying diseases of the central and peripheral nervous system of human patients. Clinical trials that use neurophysiological measures to document change are encouraged, as are manuscripts reporting data on integrated neuroimaging of central nervous function including, but not limited to, functional MRI, MEG, EEG, PET and other neuroimaging modalities.