{"title":"接触邻苯二甲酸二-2-乙基己酯后,单胺氧化酶的协同活性与斑马鱼大脑的攻击性神经行为反应和神经退化有关。","authors":"Prerana Sarangi , Pradyumna Kumar Sahoo , Lilesh Kumar Pradhan , Suvam Bhoi , Bhabani Sankar Sahoo , Nishant Ranjan Chauhan , Sangeeta Raut , Saroj Kumar Das","doi":"10.1016/j.cbpc.2024.109970","DOIUrl":null,"url":null,"abstract":"<div><p>Di-2-ethylhexyl phthalate (DEHP) is the most commonly preferred synthetic organic chemical in plastics and its products for making them ductile, flexible and durable. As DEHP is not chemically bound to the macromolecular polymer of plastics, it can be easily leached out to accumulate in food and environment. Our recent report advocated that exposure to DEHP significantly transformed the innate bottom-dwelling and scototaxis behaviour of zebrafish. Our present study aimed to understand the possible role of DEHP exposure pertaining towards the development of aggressive behaviour and its association with amplified monoamine oxidase activity and neurodegeneration in the zebrafish brain. As heightened monoamine oxidase (MAO) is linked with genesis of aggressive behaviour, our observation also coincides with DEHP-persuaded aggressive neurobehavioral transformation in zebrafish. Our preliminary findings also showed that DEHP epitomized as a prime factor in transforming native explorative behaviour and genesis of aggressive behaviour through oxidative stress induction and changes in the neuromorphology in the periventricular grey zone (PGZ) of the zebrafish brain. With the finding demarcating towards heightened chromatin condensation in the PGZ of zebrafish brain, our further observation by immunohistochemistry showed a profound augmentation in apoptotic cell death marker cleaved caspase 3 (CC3) expression following exposure to DEHP. Our further observation by immunoblotting study also demarcated a temporal augmentation in CC3 and tyrosine hydroxylase expression in the zebrafish brain. Therefore, the gross findings of the present study delineate the idea that chronic exposure to DEHP is associated with MAO-instigated aggressive neurobehavioral transformation and neurodegeneration in the zebrafish brain.</p></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"283 ","pages":"Article 109970"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concerted monoamine oxidase activity following exposure to di-2-ethylhexyl phthalate is associated with aggressive neurobehavioral response and neurodegeneration in zebrafish brain\",\"authors\":\"Prerana Sarangi , Pradyumna Kumar Sahoo , Lilesh Kumar Pradhan , Suvam Bhoi , Bhabani Sankar Sahoo , Nishant Ranjan Chauhan , Sangeeta Raut , Saroj Kumar Das\",\"doi\":\"10.1016/j.cbpc.2024.109970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Di-2-ethylhexyl phthalate (DEHP) is the most commonly preferred synthetic organic chemical in plastics and its products for making them ductile, flexible and durable. As DEHP is not chemically bound to the macromolecular polymer of plastics, it can be easily leached out to accumulate in food and environment. Our recent report advocated that exposure to DEHP significantly transformed the innate bottom-dwelling and scototaxis behaviour of zebrafish. Our present study aimed to understand the possible role of DEHP exposure pertaining towards the development of aggressive behaviour and its association with amplified monoamine oxidase activity and neurodegeneration in the zebrafish brain. As heightened monoamine oxidase (MAO) is linked with genesis of aggressive behaviour, our observation also coincides with DEHP-persuaded aggressive neurobehavioral transformation in zebrafish. Our preliminary findings also showed that DEHP epitomized as a prime factor in transforming native explorative behaviour and genesis of aggressive behaviour through oxidative stress induction and changes in the neuromorphology in the periventricular grey zone (PGZ) of the zebrafish brain. With the finding demarcating towards heightened chromatin condensation in the PGZ of zebrafish brain, our further observation by immunohistochemistry showed a profound augmentation in apoptotic cell death marker cleaved caspase 3 (CC3) expression following exposure to DEHP. Our further observation by immunoblotting study also demarcated a temporal augmentation in CC3 and tyrosine hydroxylase expression in the zebrafish brain. Therefore, the gross findings of the present study delineate the idea that chronic exposure to DEHP is associated with MAO-instigated aggressive neurobehavioral transformation and neurodegeneration in the zebrafish brain.</p></div>\",\"PeriodicalId\":10602,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"volume\":\"283 \",\"pages\":\"Article 109970\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532045624001388\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624001388","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Concerted monoamine oxidase activity following exposure to di-2-ethylhexyl phthalate is associated with aggressive neurobehavioral response and neurodegeneration in zebrafish brain
Di-2-ethylhexyl phthalate (DEHP) is the most commonly preferred synthetic organic chemical in plastics and its products for making them ductile, flexible and durable. As DEHP is not chemically bound to the macromolecular polymer of plastics, it can be easily leached out to accumulate in food and environment. Our recent report advocated that exposure to DEHP significantly transformed the innate bottom-dwelling and scototaxis behaviour of zebrafish. Our present study aimed to understand the possible role of DEHP exposure pertaining towards the development of aggressive behaviour and its association with amplified monoamine oxidase activity and neurodegeneration in the zebrafish brain. As heightened monoamine oxidase (MAO) is linked with genesis of aggressive behaviour, our observation also coincides with DEHP-persuaded aggressive neurobehavioral transformation in zebrafish. Our preliminary findings also showed that DEHP epitomized as a prime factor in transforming native explorative behaviour and genesis of aggressive behaviour through oxidative stress induction and changes in the neuromorphology in the periventricular grey zone (PGZ) of the zebrafish brain. With the finding demarcating towards heightened chromatin condensation in the PGZ of zebrafish brain, our further observation by immunohistochemistry showed a profound augmentation in apoptotic cell death marker cleaved caspase 3 (CC3) expression following exposure to DEHP. Our further observation by immunoblotting study also demarcated a temporal augmentation in CC3 and tyrosine hydroxylase expression in the zebrafish brain. Therefore, the gross findings of the present study delineate the idea that chronic exposure to DEHP is associated with MAO-instigated aggressive neurobehavioral transformation and neurodegeneration in the zebrafish brain.
期刊介绍:
Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.