{"title":"TCF12通过抑制OTUB1介导的SLC7A11去泛素化诱导铁变态反应,从而促进口腔鳞状细胞癌对顺铂的敏感性。","authors":"Yanchun Liu, Qin Bai, Nan Pang, Jun Xue","doi":"10.1002/cbin.12211","DOIUrl":null,"url":null,"abstract":"<p>Chemotherapy resistance is a major obstacle to effective cancer treatment, and promotion of ferroptosis can suppress cisplatin resistance in tumor cells. TCF12 plays a suppressive role in oral squamous cell carcinoma (OSCC), but whether it participates in the regulation of cisplatin resistance by modulating ferroptosis remains unclear. Here, we found that TCF12 expression was decreased in OSCC cells compared with normal oral cells, and it was reduced in cisplatin (DDP)-resistant OSCC cells compared with parental cells. Moreover, overexpression of TCF12 sensitized DDP-resistant cells to DDP by promoting ferroptosis. Intriguingly, silencing TCF12 reversed the promotion effect of the ferroptosis activator RSL3 on ferroptosis and DDP sensitivity, and overexpressing TCF12 antagonized the effect of the ferroptosis inhibitor liproxstatin-1 on ferroptosis and DDP resistance. Mechanically, TCF12 promoted ubiquitination of SLC7A11 and decreased SLC7A11 protein stability through transcriptional repression of OTUB1, thereby facilitating ferroptosis. Consistently, SLC7A11 overexpression neutralized the promotion effect of TCF12 on ferroptosis and DDP sensitivity. Additionally, upregulation of TCF12 hindered the growth of mouse OSCC xenografts and enhanced the DDP sensitivity of xenografts by inducing ferroptosis. In conclusion, TCF12 enhanced DDP sensitivity in OSCC cells by promoting ferroptosis, which was achieved through modulating SLC7A11 expression via transcriptional regulation of OTUB1.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 11","pages":"1649-1663"},"PeriodicalIF":3.3000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TCF12 induces ferroptosis by suppressing OTUB1-mediated SLC7A11 deubiquitination to promote cisplatin sensitivity in oral squamous cell carcinoma\",\"authors\":\"Yanchun Liu, Qin Bai, Nan Pang, Jun Xue\",\"doi\":\"10.1002/cbin.12211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chemotherapy resistance is a major obstacle to effective cancer treatment, and promotion of ferroptosis can suppress cisplatin resistance in tumor cells. TCF12 plays a suppressive role in oral squamous cell carcinoma (OSCC), but whether it participates in the regulation of cisplatin resistance by modulating ferroptosis remains unclear. Here, we found that TCF12 expression was decreased in OSCC cells compared with normal oral cells, and it was reduced in cisplatin (DDP)-resistant OSCC cells compared with parental cells. Moreover, overexpression of TCF12 sensitized DDP-resistant cells to DDP by promoting ferroptosis. Intriguingly, silencing TCF12 reversed the promotion effect of the ferroptosis activator RSL3 on ferroptosis and DDP sensitivity, and overexpressing TCF12 antagonized the effect of the ferroptosis inhibitor liproxstatin-1 on ferroptosis and DDP resistance. Mechanically, TCF12 promoted ubiquitination of SLC7A11 and decreased SLC7A11 protein stability through transcriptional repression of OTUB1, thereby facilitating ferroptosis. Consistently, SLC7A11 overexpression neutralized the promotion effect of TCF12 on ferroptosis and DDP sensitivity. Additionally, upregulation of TCF12 hindered the growth of mouse OSCC xenografts and enhanced the DDP sensitivity of xenografts by inducing ferroptosis. In conclusion, TCF12 enhanced DDP sensitivity in OSCC cells by promoting ferroptosis, which was achieved through modulating SLC7A11 expression via transcriptional regulation of OTUB1.</p>\",\"PeriodicalId\":9806,\"journal\":{\"name\":\"Cell Biology International\",\"volume\":\"48 11\",\"pages\":\"1649-1663\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biology International\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12211\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12211","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
TCF12 induces ferroptosis by suppressing OTUB1-mediated SLC7A11 deubiquitination to promote cisplatin sensitivity in oral squamous cell carcinoma
Chemotherapy resistance is a major obstacle to effective cancer treatment, and promotion of ferroptosis can suppress cisplatin resistance in tumor cells. TCF12 plays a suppressive role in oral squamous cell carcinoma (OSCC), but whether it participates in the regulation of cisplatin resistance by modulating ferroptosis remains unclear. Here, we found that TCF12 expression was decreased in OSCC cells compared with normal oral cells, and it was reduced in cisplatin (DDP)-resistant OSCC cells compared with parental cells. Moreover, overexpression of TCF12 sensitized DDP-resistant cells to DDP by promoting ferroptosis. Intriguingly, silencing TCF12 reversed the promotion effect of the ferroptosis activator RSL3 on ferroptosis and DDP sensitivity, and overexpressing TCF12 antagonized the effect of the ferroptosis inhibitor liproxstatin-1 on ferroptosis and DDP resistance. Mechanically, TCF12 promoted ubiquitination of SLC7A11 and decreased SLC7A11 protein stability through transcriptional repression of OTUB1, thereby facilitating ferroptosis. Consistently, SLC7A11 overexpression neutralized the promotion effect of TCF12 on ferroptosis and DDP sensitivity. Additionally, upregulation of TCF12 hindered the growth of mouse OSCC xenografts and enhanced the DDP sensitivity of xenografts by inducing ferroptosis. In conclusion, TCF12 enhanced DDP sensitivity in OSCC cells by promoting ferroptosis, which was achieved through modulating SLC7A11 expression via transcriptional regulation of OTUB1.
期刊介绍:
Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect.
These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.