Joseph A Landsittel, G Bard Ermentrout, Klaus M Stiefel
{"title":"头足类和鱼类雄性交配策略的理论比较","authors":"Joseph A Landsittel, G Bard Ermentrout, Klaus M Stiefel","doi":"10.1007/s11538-024-01330-z","DOIUrl":null,"url":null,"abstract":"<p><p>We used computer simulations of growth, mating and death of cephalopods and fishes to explore the effect of different life-history strategies on the relative prevalence of alternative male mating strategies. Specifically, we investigated the consequences of single or multiple matings per lifetime, mating strategy switching, cannibalism, resource stochasticity, and altruism towards relatives. We found that a combination of single (semelparous) matings, cannibalism and an absence of mating strategy changes in one lifetime led to a more strictly partitioned parameter space, with a reduced region where the two mating strategies co-exist in similar numbers. Explicitly including Hamilton's rule in simulations of the social system of a Cichlid led to an increase of dominant males, at the expense of both sneakers and dwarf males (\"super-sneakers\"). Our predictions provide general bounds on the viable ratios of alternative male mating strategies with different life-histories, and under possibly rapidly changing ecological situations.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Theoretical Comparison of Alternative Male Mating Strategies in Cephalopods and Fishes.\",\"authors\":\"Joseph A Landsittel, G Bard Ermentrout, Klaus M Stiefel\",\"doi\":\"10.1007/s11538-024-01330-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We used computer simulations of growth, mating and death of cephalopods and fishes to explore the effect of different life-history strategies on the relative prevalence of alternative male mating strategies. Specifically, we investigated the consequences of single or multiple matings per lifetime, mating strategy switching, cannibalism, resource stochasticity, and altruism towards relatives. We found that a combination of single (semelparous) matings, cannibalism and an absence of mating strategy changes in one lifetime led to a more strictly partitioned parameter space, with a reduced region where the two mating strategies co-exist in similar numbers. Explicitly including Hamilton's rule in simulations of the social system of a Cichlid led to an increase of dominant males, at the expense of both sneakers and dwarf males (\\\"super-sneakers\\\"). Our predictions provide general bounds on the viable ratios of alternative male mating strategies with different life-histories, and under possibly rapidly changing ecological situations.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11538-024-01330-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01330-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A Theoretical Comparison of Alternative Male Mating Strategies in Cephalopods and Fishes.
We used computer simulations of growth, mating and death of cephalopods and fishes to explore the effect of different life-history strategies on the relative prevalence of alternative male mating strategies. Specifically, we investigated the consequences of single or multiple matings per lifetime, mating strategy switching, cannibalism, resource stochasticity, and altruism towards relatives. We found that a combination of single (semelparous) matings, cannibalism and an absence of mating strategy changes in one lifetime led to a more strictly partitioned parameter space, with a reduced region where the two mating strategies co-exist in similar numbers. Explicitly including Hamilton's rule in simulations of the social system of a Cichlid led to an increase of dominant males, at the expense of both sneakers and dwarf males ("super-sneakers"). Our predictions provide general bounds on the viable ratios of alternative male mating strategies with different life-histories, and under possibly rapidly changing ecological situations.