{"title":"亚微米粒子撞击动力学与化学。","authors":"Sally E Burke, Robert E Continetti","doi":"10.1146/annurev-physchem-083122-122157","DOIUrl":null,"url":null,"abstract":"<p><p>Experimental studies of the collision phenomena of submicrometer particles is a developing field. This review examines the range of phenomena that can be observed with new experimental approaches. The primary focus is on single-particle impact studies enabled by charge detection mass spectrometry (CDMS) implemented using the Aerosol Impact Spectrometer (AIS) at the University of California, San Diego. The AIS combines electrospray ionization, aerodynamic lens techniques, CDMS, and an electrostatic linear accelerator to study the dynamics of particle impact over a wide range of incident velocities. The AIS has been used for single-particle impact experiments on positively charged particles of diverse composition, including polystyrene latex spheres, tin particles, and ice grains, over a wide range of impact velocities. Detection schemes based on induced charge measurements and time-of-flight mass spectrometry have enabled measurements of the impact inelasticity through the determination of the coefficient of restitution, measurements of the angular distributions of scattered submicrometer particles, and the chemical composition and dissociation of solute molecules in hypervelocity ice grain impacts.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":"75 1","pages":"67-88"},"PeriodicalIF":11.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Submicrometer Particle Impact Dynamics and Chemistry.\",\"authors\":\"Sally E Burke, Robert E Continetti\",\"doi\":\"10.1146/annurev-physchem-083122-122157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Experimental studies of the collision phenomena of submicrometer particles is a developing field. This review examines the range of phenomena that can be observed with new experimental approaches. The primary focus is on single-particle impact studies enabled by charge detection mass spectrometry (CDMS) implemented using the Aerosol Impact Spectrometer (AIS) at the University of California, San Diego. The AIS combines electrospray ionization, aerodynamic lens techniques, CDMS, and an electrostatic linear accelerator to study the dynamics of particle impact over a wide range of incident velocities. The AIS has been used for single-particle impact experiments on positively charged particles of diverse composition, including polystyrene latex spheres, tin particles, and ice grains, over a wide range of impact velocities. Detection schemes based on induced charge measurements and time-of-flight mass spectrometry have enabled measurements of the impact inelasticity through the determination of the coefficient of restitution, measurements of the angular distributions of scattered submicrometer particles, and the chemical composition and dissociation of solute molecules in hypervelocity ice grain impacts.</p>\",\"PeriodicalId\":7967,\"journal\":{\"name\":\"Annual review of physical chemistry\",\"volume\":\"75 1\",\"pages\":\"67-88\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of physical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-physchem-083122-122157\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-083122-122157","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Submicrometer Particle Impact Dynamics and Chemistry.
Experimental studies of the collision phenomena of submicrometer particles is a developing field. This review examines the range of phenomena that can be observed with new experimental approaches. The primary focus is on single-particle impact studies enabled by charge detection mass spectrometry (CDMS) implemented using the Aerosol Impact Spectrometer (AIS) at the University of California, San Diego. The AIS combines electrospray ionization, aerodynamic lens techniques, CDMS, and an electrostatic linear accelerator to study the dynamics of particle impact over a wide range of incident velocities. The AIS has been used for single-particle impact experiments on positively charged particles of diverse composition, including polystyrene latex spheres, tin particles, and ice grains, over a wide range of impact velocities. Detection schemes based on induced charge measurements and time-of-flight mass spectrometry have enabled measurements of the impact inelasticity through the determination of the coefficient of restitution, measurements of the angular distributions of scattered submicrometer particles, and the chemical composition and dissociation of solute molecules in hypervelocity ice grain impacts.
期刊介绍:
The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.