构建南非鲍鱼(Haliotis midae)生长性状的高密度连接图和 QTL 检测。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Thendo Stanley Tshilate, Edson Ishengoma, Clint Rhode
{"title":"构建南非鲍鱼(Haliotis midae)生长性状的高密度连接图和 QTL 检测。","authors":"Thendo Stanley Tshilate,&nbsp;Edson Ishengoma,&nbsp;Clint Rhode","doi":"10.1111/age.13462","DOIUrl":null,"url":null,"abstract":"<p><i>Haliotis midae</i> is one of the most important molluscs in South African commercial aquaculture. In this study, a high-resolution integrated linkage map was constructed, and QTL identified using 2b-RADseq for genotyping SNPs in three families. The final integrated linkage map was composed by merging the individual family maps, resulting in 3290 informative SNPs mapping to 18 linkage groups, conforming to the known haploid chromosome number for <i>H. midae</i>. The total map spanned 1798.25 cM with an average marker interval of 0.55 cM, representing a genome coverage of 98.76%. QTL analysis, across all three families, resulted in a total of five QTL identified for growth-related traits, shell width, shell length, and total body weight. For shell width and total body weight, one QTL was identified for each trait respectively, whilst three QTL were identified for shell length. The identified QTL respectively explained between 7.20% and 11.40% of the observed phenotypic variance. All three traits were significantly correlated (<i>r</i> = 0.862–0.970; <i>p</i> &lt; 0.01) and shared overlapping QTL. The QTL for growth traits were mapped back to the <i>H. midae</i> draft genome and BLAST searches revealed the identity of candidate genes, such as <i>egf-1</i>, <i>megf10</i>, <i>megf6</i>, <i>tnx</i>, <i>sevp1</i>, <i>kcp</i>, <i>notch1</i>, and s<i>cube2</i> with possible functional roles in <i>H. midae</i> growth. The constructed high-density linkage map and mapped QTL have given valuable insights regarding the genetic architecture of growth-related traits and will be important genetic resources for marker-assisted selection. It remains, however, important to validate causal variants through linkage disequilibrium fine mapping in future.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/age.13462","citationCount":"0","resultStr":"{\"title\":\"Construction of a high-density linkage map and QTL detection for growth traits in South African abalone (Haliotis midae)\",\"authors\":\"Thendo Stanley Tshilate,&nbsp;Edson Ishengoma,&nbsp;Clint Rhode\",\"doi\":\"10.1111/age.13462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Haliotis midae</i> is one of the most important molluscs in South African commercial aquaculture. In this study, a high-resolution integrated linkage map was constructed, and QTL identified using 2b-RADseq for genotyping SNPs in three families. The final integrated linkage map was composed by merging the individual family maps, resulting in 3290 informative SNPs mapping to 18 linkage groups, conforming to the known haploid chromosome number for <i>H. midae</i>. The total map spanned 1798.25 cM with an average marker interval of 0.55 cM, representing a genome coverage of 98.76%. QTL analysis, across all three families, resulted in a total of five QTL identified for growth-related traits, shell width, shell length, and total body weight. For shell width and total body weight, one QTL was identified for each trait respectively, whilst three QTL were identified for shell length. The identified QTL respectively explained between 7.20% and 11.40% of the observed phenotypic variance. All three traits were significantly correlated (<i>r</i> = 0.862–0.970; <i>p</i> &lt; 0.01) and shared overlapping QTL. The QTL for growth traits were mapped back to the <i>H. midae</i> draft genome and BLAST searches revealed the identity of candidate genes, such as <i>egf-1</i>, <i>megf10</i>, <i>megf6</i>, <i>tnx</i>, <i>sevp1</i>, <i>kcp</i>, <i>notch1</i>, and s<i>cube2</i> with possible functional roles in <i>H. midae</i> growth. The constructed high-density linkage map and mapped QTL have given valuable insights regarding the genetic architecture of growth-related traits and will be important genetic resources for marker-assisted selection. It remains, however, important to validate causal variants through linkage disequilibrium fine mapping in future.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/age.13462\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/age.13462\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/age.13462","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Haliotis midae 是南非商业水产养殖中最重要的软体动物之一。本研究构建了一个高分辨率的整合连接图,并使用 2b-RADseq 对三个家系中的 SNP 进行基因分型,从而鉴定出 QTL。最终的整合连接图谱是通过合并各个家系图谱绘制而成的,共有 3290 个有信息的 SNPs 映射到 18 个连接组中,与 H. midae 的已知单倍体染色体数目一致。总图谱跨度为 1798.25 cM,平均标记间隔为 0.55 cM,基因组覆盖率为 98.76%。对所有三个家系进行 QTL 分析的结果是,在与生长相关的性状、壳宽、壳长和总体重方面共鉴定出五个 QTL。在壳宽和总体重方面,每个性状分别鉴定出一个 QTL,而在壳长方面则鉴定出三个 QTL。鉴定出的 QTL 分别解释了观察到的表型变异的 7.20% 到 11.40%。所有三个性状都有明显的相关性(r = 0.862-0.970; p
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Construction of a high-density linkage map and QTL detection for growth traits in South African abalone (Haliotis midae)

Construction of a high-density linkage map and QTL detection for growth traits in South African abalone (Haliotis midae)

Haliotis midae is one of the most important molluscs in South African commercial aquaculture. In this study, a high-resolution integrated linkage map was constructed, and QTL identified using 2b-RADseq for genotyping SNPs in three families. The final integrated linkage map was composed by merging the individual family maps, resulting in 3290 informative SNPs mapping to 18 linkage groups, conforming to the known haploid chromosome number for H. midae. The total map spanned 1798.25 cM with an average marker interval of 0.55 cM, representing a genome coverage of 98.76%. QTL analysis, across all three families, resulted in a total of five QTL identified for growth-related traits, shell width, shell length, and total body weight. For shell width and total body weight, one QTL was identified for each trait respectively, whilst three QTL were identified for shell length. The identified QTL respectively explained between 7.20% and 11.40% of the observed phenotypic variance. All three traits were significantly correlated (r = 0.862–0.970; p < 0.01) and shared overlapping QTL. The QTL for growth traits were mapped back to the H. midae draft genome and BLAST searches revealed the identity of candidate genes, such as egf-1, megf10, megf6, tnx, sevp1, kcp, notch1, and scube2 with possible functional roles in H. midae growth. The constructed high-density linkage map and mapped QTL have given valuable insights regarding the genetic architecture of growth-related traits and will be important genetic resources for marker-assisted selection. It remains, however, important to validate causal variants through linkage disequilibrium fine mapping in future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信