凝聚相中的多电子动力学:量子结构-功能关系

IF 11.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Joel D Eaves
{"title":"凝聚相中的多电子动力学:量子结构-功能关系","authors":"Joel D Eaves","doi":"10.1146/annurev-physchem-042018-052515","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum information promises dramatic advances in computing last seen in the digital revolution, but quantum hardware is fragile, noisy, and resource intensive. Chemistry has a role in developing new materials for quantum information that are robust to noise, scalable, and operable in ambient conditions. While molecular structure is the foundation for understanding mechanism and reactivity, molecular structure/quantum function relationships remain mostly undiscovered. Using singlet fission as a specific example of a multielectron process capable of producing long-lived spin-entangled electronic states at high temperatures, I describe how to exploit molecular structure and symmetry to gain quantum function and how some principles learned from singlet fission apply more broadly to quantum science.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multielectron Dynamics in the Condensed Phase: Quantum Structure-Function Relationships.\",\"authors\":\"Joel D Eaves\",\"doi\":\"10.1146/annurev-physchem-042018-052515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantum information promises dramatic advances in computing last seen in the digital revolution, but quantum hardware is fragile, noisy, and resource intensive. Chemistry has a role in developing new materials for quantum information that are robust to noise, scalable, and operable in ambient conditions. While molecular structure is the foundation for understanding mechanism and reactivity, molecular structure/quantum function relationships remain mostly undiscovered. Using singlet fission as a specific example of a multielectron process capable of producing long-lived spin-entangled electronic states at high temperatures, I describe how to exploit molecular structure and symmetry to gain quantum function and how some principles learned from singlet fission apply more broadly to quantum science.</p>\",\"PeriodicalId\":7967,\"journal\":{\"name\":\"Annual review of physical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of physical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-physchem-042018-052515\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-042018-052515","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

量子信息有望在计算领域取得数字革命中从未有过的巨大进步,但量子硬件却十分脆弱、噪声大且耗费资源。化学在开发新的量子信息材料方面发挥着作用,这些材料具有抗噪声、可扩展和可在环境条件下运行的特点。虽然分子结构是理解机理和反应性的基础,但分子结构/量子功能关系大部分仍未被发现。我将单电子裂变作为能够在高温下产生长寿命自旋纠缠电子态的多电子过程的一个具体实例,介绍如何利用分子结构和对称性获得量子功能,以及从单电子裂变中学到的一些原理如何更广泛地应用于量子科学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multielectron Dynamics in the Condensed Phase: Quantum Structure-Function Relationships.

Quantum information promises dramatic advances in computing last seen in the digital revolution, but quantum hardware is fragile, noisy, and resource intensive. Chemistry has a role in developing new materials for quantum information that are robust to noise, scalable, and operable in ambient conditions. While molecular structure is the foundation for understanding mechanism and reactivity, molecular structure/quantum function relationships remain mostly undiscovered. Using singlet fission as a specific example of a multielectron process capable of producing long-lived spin-entangled electronic states at high temperatures, I describe how to exploit molecular structure and symmetry to gain quantum function and how some principles learned from singlet fission apply more broadly to quantum science.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
28.00
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信