{"title":"母乳喂养在预防疾病中的作用。","authors":"Andrea C. Masi, Christopher J. Stewart","doi":"10.1111/1751-7915.14520","DOIUrl":null,"url":null,"abstract":"<p>Human milk provides the infant with many bioactive factors, including immunomodulating components, antimicrobials and prebiotics, which modulate the infant microbiome and immune system maturation. As a result, breastfeeding can impact infant health from infancy, through adolescence, and into adulthood. From protecting the infant from infections, to reducing the risk of obesity, type 1 diabetes and childhood leukaemia, many positive health outcomes are observed in infants receiving breastmilk. For the mother, breastfeeding protects against postpartum bleeding and depression, increases weight loss, and long-term lowers the risk of type 2 diabetes, breast and ovarian cancer, and cardiovascular diseases. Beyond infants and mothers, the wider society is also impacted because of avoidable costs relating to morbidity and mortality derived from a lack of human milk exposure. In this review, Medline was used to search for relevant articles to discuss the health benefits of breastfeeding and its societal impact before exploring future recommendations to enhance our understanding of the mechanisms behind breastfeeding's positive effects and promote breastfeeding on a global scale.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 7","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.14520","citationCount":"0","resultStr":"{\"title\":\"Role of breastfeeding in disease prevention\",\"authors\":\"Andrea C. Masi, Christopher J. Stewart\",\"doi\":\"10.1111/1751-7915.14520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human milk provides the infant with many bioactive factors, including immunomodulating components, antimicrobials and prebiotics, which modulate the infant microbiome and immune system maturation. As a result, breastfeeding can impact infant health from infancy, through adolescence, and into adulthood. From protecting the infant from infections, to reducing the risk of obesity, type 1 diabetes and childhood leukaemia, many positive health outcomes are observed in infants receiving breastmilk. For the mother, breastfeeding protects against postpartum bleeding and depression, increases weight loss, and long-term lowers the risk of type 2 diabetes, breast and ovarian cancer, and cardiovascular diseases. Beyond infants and mothers, the wider society is also impacted because of avoidable costs relating to morbidity and mortality derived from a lack of human milk exposure. In this review, Medline was used to search for relevant articles to discuss the health benefits of breastfeeding and its societal impact before exploring future recommendations to enhance our understanding of the mechanisms behind breastfeeding's positive effects and promote breastfeeding on a global scale.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"17 7\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.14520\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.14520\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.14520","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Human milk provides the infant with many bioactive factors, including immunomodulating components, antimicrobials and prebiotics, which modulate the infant microbiome and immune system maturation. As a result, breastfeeding can impact infant health from infancy, through adolescence, and into adulthood. From protecting the infant from infections, to reducing the risk of obesity, type 1 diabetes and childhood leukaemia, many positive health outcomes are observed in infants receiving breastmilk. For the mother, breastfeeding protects against postpartum bleeding and depression, increases weight loss, and long-term lowers the risk of type 2 diabetes, breast and ovarian cancer, and cardiovascular diseases. Beyond infants and mothers, the wider society is also impacted because of avoidable costs relating to morbidity and mortality derived from a lack of human milk exposure. In this review, Medline was used to search for relevant articles to discuss the health benefits of breastfeeding and its societal impact before exploring future recommendations to enhance our understanding of the mechanisms behind breastfeeding's positive effects and promote breastfeeding on a global scale.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes