{"title":"在碱性水中通过甘油电氧化产生甲酸的二维铜基纳米片。","authors":"Srewashi Das, Siddarth Jain, Anwesha Banerjee, Arnab Dutta","doi":"10.1002/cplu.202400317","DOIUrl":null,"url":null,"abstract":"<p>The sluggishness of the complementary oxygen evolution reaction (OER) is reckoned as one of the major drawbacks in developing an energy-efficient green hydrogen-producing electrolyzer. An array of organic molecule oxidation reactions, operational at a relatively low potential, have been explored as a substitute for the OER. Glycerol oxidation reaction (GOR) has emerged as a leading alternative in this context because glycerol, a waste of biodiesel manufacturing, has become ubiquitous and accessible due to the significant growth in the biodiesel sector in recent decades. Additionally, the GOR generates several value-added organic compounds following oxidation that enhance the cost viability of the overall electrolysis reaction. In this study, a low-cost, room temperature operable, and energy-efficient synthetic methodology has been developed to generate unique two-dimensional CuO nanosheets (CuO NS). This CuO NS material was embedded on a carbon paper electrode, which showcased excellent glycerol electro-oxidation performance operational at a moderately low applied potential. Formic acid is the major product of this CuO NS-driven GOR (Faradaic efficiency ~80 %), as it is formed primarily via the glyceraldehyde oxidation pathway. This CuO NS material was also active for oxidizing other abundant alcohols like ethylene glycol and diethylene glycol, albeit at a relatively poor efficiency. Therefore, this robust CuO NS material has displayed the potential to be used in large-scale electrolyzers functioning with HER/GOR reactions.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Two-Dimensional Cu-Based Nanosheet Producing Formic Acid Via Glycerol Electro-Oxidation in Alkaline Water\",\"authors\":\"Srewashi Das, Siddarth Jain, Anwesha Banerjee, Arnab Dutta\",\"doi\":\"10.1002/cplu.202400317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The sluggishness of the complementary oxygen evolution reaction (OER) is reckoned as one of the major drawbacks in developing an energy-efficient green hydrogen-producing electrolyzer. An array of organic molecule oxidation reactions, operational at a relatively low potential, have been explored as a substitute for the OER. Glycerol oxidation reaction (GOR) has emerged as a leading alternative in this context because glycerol, a waste of biodiesel manufacturing, has become ubiquitous and accessible due to the significant growth in the biodiesel sector in recent decades. Additionally, the GOR generates several value-added organic compounds following oxidation that enhance the cost viability of the overall electrolysis reaction. In this study, a low-cost, room temperature operable, and energy-efficient synthetic methodology has been developed to generate unique two-dimensional CuO nanosheets (CuO NS). This CuO NS material was embedded on a carbon paper electrode, which showcased excellent glycerol electro-oxidation performance operational at a moderately low applied potential. Formic acid is the major product of this CuO NS-driven GOR (Faradaic efficiency ~80 %), as it is formed primarily via the glyceraldehyde oxidation pathway. This CuO NS material was also active for oxidizing other abundant alcohols like ethylene glycol and diethylene glycol, albeit at a relatively poor efficiency. Therefore, this robust CuO NS material has displayed the potential to be used in large-scale electrolyzers functioning with HER/GOR reactions.</p>\",\"PeriodicalId\":148,\"journal\":{\"name\":\"ChemPlusChem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPlusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cplu.202400317\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cplu.202400317","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Two-Dimensional Cu-Based Nanosheet Producing Formic Acid Via Glycerol Electro-Oxidation in Alkaline Water
The sluggishness of the complementary oxygen evolution reaction (OER) is reckoned as one of the major drawbacks in developing an energy-efficient green hydrogen-producing electrolyzer. An array of organic molecule oxidation reactions, operational at a relatively low potential, have been explored as a substitute for the OER. Glycerol oxidation reaction (GOR) has emerged as a leading alternative in this context because glycerol, a waste of biodiesel manufacturing, has become ubiquitous and accessible due to the significant growth in the biodiesel sector in recent decades. Additionally, the GOR generates several value-added organic compounds following oxidation that enhance the cost viability of the overall electrolysis reaction. In this study, a low-cost, room temperature operable, and energy-efficient synthetic methodology has been developed to generate unique two-dimensional CuO nanosheets (CuO NS). This CuO NS material was embedded on a carbon paper electrode, which showcased excellent glycerol electro-oxidation performance operational at a moderately low applied potential. Formic acid is the major product of this CuO NS-driven GOR (Faradaic efficiency ~80 %), as it is formed primarily via the glyceraldehyde oxidation pathway. This CuO NS material was also active for oxidizing other abundant alcohols like ethylene glycol and diethylene glycol, albeit at a relatively poor efficiency. Therefore, this robust CuO NS material has displayed the potential to be used in large-scale electrolyzers functioning with HER/GOR reactions.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.