Ye Zhu , Wenjie Fan , Yingfeng Ji , Weiling Zhu , Lili Feng , Rui Qu
{"title":"应力演化对 2022 年红河 5.0 级地震序列的强控制效应","authors":"Ye Zhu , Wenjie Fan , Yingfeng Ji , Weiling Zhu , Lili Feng , Rui Qu","doi":"10.1016/j.tecto.2024.230401","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding stress evolution patterns as a response to earthquake ruptures at geologically complex tectonic faults is vital because of the role of fault geometry as a source for the stress evolutionary constraints. Here, we analyze the 2022 Ms5.0 Honghe earthquake sequence and calculate the tectonic stress distribution of the two Ms. ≥ 3.5 earthquakes in this sequence. Results indicate that the focal mechanism type of the sequence obtained corresponds to strike-slip motion with an ESE-oriented strike and a steeply dipping NE-oriented nodal plane. The focal region is subjected to NNW-oriented horizontal compression and ENE-oriented horizontal tension. We find that the adjacent Ailaoshan fault constituted the major seismogenic fault of the mainshock and the regional stress field exerted a strong controlling effect on the associated postseismic events. Our results suggest that the stabilization of tectonic faults may help to enhance the effects of stress accumulation on the occurrence of medium-to-strong earthquakes.</p></div>","PeriodicalId":22257,"journal":{"name":"Tectonophysics","volume":"884 ","pages":"Article 230401"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong controlling effect of stress evolution on the 2022 Ms5.0 Honghe earthquake sequence\",\"authors\":\"Ye Zhu , Wenjie Fan , Yingfeng Ji , Weiling Zhu , Lili Feng , Rui Qu\",\"doi\":\"10.1016/j.tecto.2024.230401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding stress evolution patterns as a response to earthquake ruptures at geologically complex tectonic faults is vital because of the role of fault geometry as a source for the stress evolutionary constraints. Here, we analyze the 2022 Ms5.0 Honghe earthquake sequence and calculate the tectonic stress distribution of the two Ms. ≥ 3.5 earthquakes in this sequence. Results indicate that the focal mechanism type of the sequence obtained corresponds to strike-slip motion with an ESE-oriented strike and a steeply dipping NE-oriented nodal plane. The focal region is subjected to NNW-oriented horizontal compression and ENE-oriented horizontal tension. We find that the adjacent Ailaoshan fault constituted the major seismogenic fault of the mainshock and the regional stress field exerted a strong controlling effect on the associated postseismic events. Our results suggest that the stabilization of tectonic faults may help to enhance the effects of stress accumulation on the occurrence of medium-to-strong earthquakes.</p></div>\",\"PeriodicalId\":22257,\"journal\":{\"name\":\"Tectonophysics\",\"volume\":\"884 \",\"pages\":\"Article 230401\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tectonophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040195124002038\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tectonophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040195124002038","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
由于断层几何是应力演化约束的来源,因此理解应力演化模式作为地质构造复杂的断层对地震破裂的响应至关重要。在此,我们分析了 2022 年 Ms5.0 红河地震序列,并计算了该序列中两次 Ms≥3.5 地震的构造应力分布。结果表明,该地震序列的震源机制类型对应于走向为 ESE、结面陡倾为 NE 的走向滑动运动。震源区受到 NNW 向水平压缩和 ENE 向水平拉伸。我们发现,邻近的爱老山断层是此次主震的主要发震断层,区域应力场对相关震后事件具有很强的控制作用。我们的研究结果表明,构造断层的稳定可能有助于增强应力累积对中强地震发生的影响。
Strong controlling effect of stress evolution on the 2022 Ms5.0 Honghe earthquake sequence
Understanding stress evolution patterns as a response to earthquake ruptures at geologically complex tectonic faults is vital because of the role of fault geometry as a source for the stress evolutionary constraints. Here, we analyze the 2022 Ms5.0 Honghe earthquake sequence and calculate the tectonic stress distribution of the two Ms. ≥ 3.5 earthquakes in this sequence. Results indicate that the focal mechanism type of the sequence obtained corresponds to strike-slip motion with an ESE-oriented strike and a steeply dipping NE-oriented nodal plane. The focal region is subjected to NNW-oriented horizontal compression and ENE-oriented horizontal tension. We find that the adjacent Ailaoshan fault constituted the major seismogenic fault of the mainshock and the regional stress field exerted a strong controlling effect on the associated postseismic events. Our results suggest that the stabilization of tectonic faults may help to enhance the effects of stress accumulation on the occurrence of medium-to-strong earthquakes.
期刊介绍:
The prime focus of Tectonophysics will be high-impact original research and reviews in the fields of kinematics, structure, composition, and dynamics of the solid arth at all scales. Tectonophysics particularly encourages submission of papers based on the integration of a multitude of geophysical, geological, geochemical, geodynamic, and geotectonic methods