{"title":"分析多组分和多相聚合物系统 1H 自旋扩散 NMR 的数值模拟方法","authors":"Xuran Jin , Wei Chen","doi":"10.1016/j.ssnmr.2024.101946","DOIUrl":null,"url":null,"abstract":"<div><p>A numerical simulation method, namely, <em>SDNMR-WEBFIT</em>, is reported for simulating proton spin diffusion NMR based on the Levenberg-Marquardt algorithm and a pseudo-2D diffusion model. This method is used for the precise quantification of dynamics heterogeneity of the interphase within multiphase polymer systems. The numerical simulation method provides measurements of spin-lattice relaxation time (<em>T</em><sub>1</sub>), proton density (<em>ρ</em><sub>H</sub>), lamellar thickness (<em>d</em>), and spin diffusion coefficient (<em>D</em>) for each component. The pseudo-2D diffusion model is employed to simulate the proton spin diffusion build-up/decay curves, simultaneously calculating the lateral fraction of island-like structures (<em>x</em>-ratio). Such approach was successfully applied to various polymer systems, such as semi-crystalline polymer (Poly(ε-caprolactone), PCL), block copolymers (Styrene-butadiene-styrene triblock copolymer, SBS), and plasticized semi-polymers (Polvinyl alcohol, PVA).</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"132 ","pages":"Article 101946"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Numerical simulation method for analyzing 1H spin diffusion NMR for Multicomponent and multiphase polymer systems\",\"authors\":\"Xuran Jin , Wei Chen\",\"doi\":\"10.1016/j.ssnmr.2024.101946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A numerical simulation method, namely, <em>SDNMR-WEBFIT</em>, is reported for simulating proton spin diffusion NMR based on the Levenberg-Marquardt algorithm and a pseudo-2D diffusion model. This method is used for the precise quantification of dynamics heterogeneity of the interphase within multiphase polymer systems. The numerical simulation method provides measurements of spin-lattice relaxation time (<em>T</em><sub>1</sub>), proton density (<em>ρ</em><sub>H</sub>), lamellar thickness (<em>d</em>), and spin diffusion coefficient (<em>D</em>) for each component. The pseudo-2D diffusion model is employed to simulate the proton spin diffusion build-up/decay curves, simultaneously calculating the lateral fraction of island-like structures (<em>x</em>-ratio). Such approach was successfully applied to various polymer systems, such as semi-crystalline polymer (Poly(ε-caprolactone), PCL), block copolymers (Styrene-butadiene-styrene triblock copolymer, SBS), and plasticized semi-polymers (Polvinyl alcohol, PVA).</p></div>\",\"PeriodicalId\":21937,\"journal\":{\"name\":\"Solid state nuclear magnetic resonance\",\"volume\":\"132 \",\"pages\":\"Article 101946\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid state nuclear magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926204024000328\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid state nuclear magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926204024000328","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A Numerical simulation method for analyzing 1H spin diffusion NMR for Multicomponent and multiphase polymer systems
A numerical simulation method, namely, SDNMR-WEBFIT, is reported for simulating proton spin diffusion NMR based on the Levenberg-Marquardt algorithm and a pseudo-2D diffusion model. This method is used for the precise quantification of dynamics heterogeneity of the interphase within multiphase polymer systems. The numerical simulation method provides measurements of spin-lattice relaxation time (T1), proton density (ρH), lamellar thickness (d), and spin diffusion coefficient (D) for each component. The pseudo-2D diffusion model is employed to simulate the proton spin diffusion build-up/decay curves, simultaneously calculating the lateral fraction of island-like structures (x-ratio). Such approach was successfully applied to various polymer systems, such as semi-crystalline polymer (Poly(ε-caprolactone), PCL), block copolymers (Styrene-butadiene-styrene triblock copolymer, SBS), and plasticized semi-polymers (Polvinyl alcohol, PVA).
期刊介绍:
The journal Solid State Nuclear Magnetic Resonance publishes original manuscripts of high scientific quality dealing with all experimental and theoretical aspects of solid state NMR. This includes advances in instrumentation, development of new experimental techniques and methodology, new theoretical insights, new data processing and simulation methods, and original applications of established or novel methods to scientific problems.