Yuhang Wang , Thejas Hulikal Chakrapani , Zhang Wen , Hadi Hajibeygi
{"title":"与地下储氢相关的 H2-brine 系统的孔隙尺度模拟:晶格玻尔兹曼研究","authors":"Yuhang Wang , Thejas Hulikal Chakrapani , Zhang Wen , Hadi Hajibeygi","doi":"10.1016/j.advwatres.2024.104756","DOIUrl":null,"url":null,"abstract":"<div><p>Underground hydrogen (H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) storage in saline aquifers is a viable solution for large-scale H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> storage. Due to its remarkably low viscosity and density, the flow of H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> within saline aquifers exhibits strong instability, which needs to be thoroughly investigated to ensure safe operations at the storage site. For the first time, we develop a lattice Boltzmann model tailored for pore-scale simulations of the H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-brine system under typical subsurface storage conditions. The model captures the significant contrast of fluid properties between H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and brine, and it offers the flexibility to adjust the contact angle to suit varying wetting conditions. We show that the snap-off is enhanced in a system with a high capillary number and a small contact angle. These conditions lead to a low recovery factor, which is unfavorable for H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> production from the aquifer. Moreover, the relative permeability curves, computed from the simulation results, exhibit distinct behaviors for H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and brine. In the case of the wetting phase, the relative permeability can be quantified using the quadratic expression, whereas for the non-wetting phase, the relative permeability exhibits a nearly linear behavior, and saturation alone appears insufficient to characterize the relative permeability at large saturations of non-wetting phase. This implies that different formula for liquid and gas phases may be employed for continuum-scale simulations.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"190 ","pages":"Article 104756"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S030917082400143X/pdfft?md5=087920de9e3500d3577e0eb40a169c17&pid=1-s2.0-S030917082400143X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Pore-scale simulation of H2-brine system relevant for underground hydrogen storage: A lattice Boltzmann investigation\",\"authors\":\"Yuhang Wang , Thejas Hulikal Chakrapani , Zhang Wen , Hadi Hajibeygi\",\"doi\":\"10.1016/j.advwatres.2024.104756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Underground hydrogen (H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) storage in saline aquifers is a viable solution for large-scale H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> storage. Due to its remarkably low viscosity and density, the flow of H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> within saline aquifers exhibits strong instability, which needs to be thoroughly investigated to ensure safe operations at the storage site. For the first time, we develop a lattice Boltzmann model tailored for pore-scale simulations of the H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-brine system under typical subsurface storage conditions. The model captures the significant contrast of fluid properties between H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and brine, and it offers the flexibility to adjust the contact angle to suit varying wetting conditions. We show that the snap-off is enhanced in a system with a high capillary number and a small contact angle. These conditions lead to a low recovery factor, which is unfavorable for H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> production from the aquifer. Moreover, the relative permeability curves, computed from the simulation results, exhibit distinct behaviors for H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and brine. In the case of the wetting phase, the relative permeability can be quantified using the quadratic expression, whereas for the non-wetting phase, the relative permeability exhibits a nearly linear behavior, and saturation alone appears insufficient to characterize the relative permeability at large saturations of non-wetting phase. This implies that different formula for liquid and gas phases may be employed for continuum-scale simulations.</p></div>\",\"PeriodicalId\":7614,\"journal\":{\"name\":\"Advances in Water Resources\",\"volume\":\"190 \",\"pages\":\"Article 104756\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S030917082400143X/pdfft?md5=087920de9e3500d3577e0eb40a169c17&pid=1-s2.0-S030917082400143X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Water Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030917082400143X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030917082400143X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
摘要
在含盐含水层中地下储氢(H)是大规模储氢的可行解决方案。由于氢具有极低的粘度和密度,其在含盐地下蓄水层中的流动表现出极强的不稳定性,需要对其进行深入研究,以确保储氢场的安全运行。我们首次开发了一种晶格玻尔兹曼模型,专门用于在典型的地下储藏条件下对 H-盐水系统进行孔隙尺度模拟。该模型捕捉到了 H 和盐水之间流体性质的显著对比,并能灵活调整接触角,以适应不同的润湿条件。我们的研究表明,在毛细管数大、接触角小的系统中,卡断现象会增强。这些条件导致回收系数较低,不利于从含水层中生产 H。此外,根据模拟结果计算出的相对渗透率曲线对 H 和盐水表现出不同的行为。对于润湿相,相对渗透率可以用二次表达式来量化,而对于非润湿相,相对渗透率则表现出近乎线性的行为,在非润湿相饱和度较大时,仅凭饱和度似乎不足以描述相对渗透率的特征。这意味着在进行连续尺度模拟时,可以采用不同的液相和气相公式。
Pore-scale simulation of H2-brine system relevant for underground hydrogen storage: A lattice Boltzmann investigation
Underground hydrogen (H) storage in saline aquifers is a viable solution for large-scale H storage. Due to its remarkably low viscosity and density, the flow of H within saline aquifers exhibits strong instability, which needs to be thoroughly investigated to ensure safe operations at the storage site. For the first time, we develop a lattice Boltzmann model tailored for pore-scale simulations of the H-brine system under typical subsurface storage conditions. The model captures the significant contrast of fluid properties between H and brine, and it offers the flexibility to adjust the contact angle to suit varying wetting conditions. We show that the snap-off is enhanced in a system with a high capillary number and a small contact angle. These conditions lead to a low recovery factor, which is unfavorable for H production from the aquifer. Moreover, the relative permeability curves, computed from the simulation results, exhibit distinct behaviors for H and brine. In the case of the wetting phase, the relative permeability can be quantified using the quadratic expression, whereas for the non-wetting phase, the relative permeability exhibits a nearly linear behavior, and saturation alone appears insufficient to characterize the relative permeability at large saturations of non-wetting phase. This implies that different formula for liquid and gas phases may be employed for continuum-scale simulations.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes