一种高强度钛合金的表面下变形机理以及脆化过程中强度-电导率与脆化耐磨性之间的相互作用关系

IF 6.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Friction Pub Date : 2024-06-28 DOI:10.1007/s40544-024-0870-y
Yanlin Tong, Ke Hua, Haoyang Xie, Yue Cao, Zhuobin Huang, Zhenpeng Liang, Xiaolin Li, Hongxing Wu, Haifeng Wang
{"title":"一种高强度钛合金的表面下变形机理以及脆化过程中强度-电导率与脆化耐磨性之间的相互作用关系","authors":"Yanlin Tong, Ke Hua, Haoyang Xie, Yue Cao, Zhuobin Huang, Zhenpeng Liang, Xiaolin Li, Hongxing Wu, Haifeng Wang","doi":"10.1007/s40544-024-0870-y","DOIUrl":null,"url":null,"abstract":"<p>Fretting wear damage of high-strength titanium fasteners has caused a large number of disastrous accidents. Traditionally, it is believed that both high strength and excellent ductility can reduce fretting wear damage. However, whether strength and ductility are contradictory or not and their appropriate matching strategy under the external applied normal stress (<i>F</i><sub>w</sub>) are still confusing problems. Here, by analyzing the subsurface-microstructure deformation mechanism of several samples containing various <i>α</i> precipitate features, for the first time, we design strategies to improve fretting damage resistance under different matching relation between <i>F</i><sub>w</sub> and the tensile strength of materials (<i>R</i><sub>m</sub>). It is found that when <i>F</i><sub>w</sub> is greater than <i>R</i><sub>m</sub> or <i>F</i><sub>w</sub> is nearly equivalent to <i>R</i><sub>m</sub>, the deformation mechanism mainly manifests as serious grain fragmentation of <i>β</i> and <i>α</i><sub>GB</sub> constituents. Homogeneous deformation in large areas only reduces damage to a limited extent. It is crucial to improve the strength to resist cracking and wear, but it is of little significance to improve the ductility. However, when <i>F</i><sub>w</sub> is far less than <i>R</i><sub>m</sub>, coordinated deformation ability reflected by ductility plays a more important role. The deformation mechanism mainly manifests as localized deformation of <i>β</i> and <i>α</i><sub>GB</sub> constituents (kinking induced by twinning and spheroidizing). A unique composite structure of nano-grained/lamellar layer and localized deformation transition layer reduces fretting damage by five times compared with a single nano-grained layer. Only when the strength is great enough, improving the plasticity can reduce wear. This study can provide a principle for designing fretting damage resistant alloys.\n</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"17 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subsurface deformation mechanism and the interplay relationship between strength–ductility and fretting wear resistance during fretting of a high-strength titanium alloy\",\"authors\":\"Yanlin Tong, Ke Hua, Haoyang Xie, Yue Cao, Zhuobin Huang, Zhenpeng Liang, Xiaolin Li, Hongxing Wu, Haifeng Wang\",\"doi\":\"10.1007/s40544-024-0870-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fretting wear damage of high-strength titanium fasteners has caused a large number of disastrous accidents. Traditionally, it is believed that both high strength and excellent ductility can reduce fretting wear damage. However, whether strength and ductility are contradictory or not and their appropriate matching strategy under the external applied normal stress (<i>F</i><sub>w</sub>) are still confusing problems. Here, by analyzing the subsurface-microstructure deformation mechanism of several samples containing various <i>α</i> precipitate features, for the first time, we design strategies to improve fretting damage resistance under different matching relation between <i>F</i><sub>w</sub> and the tensile strength of materials (<i>R</i><sub>m</sub>). It is found that when <i>F</i><sub>w</sub> is greater than <i>R</i><sub>m</sub> or <i>F</i><sub>w</sub> is nearly equivalent to <i>R</i><sub>m</sub>, the deformation mechanism mainly manifests as serious grain fragmentation of <i>β</i> and <i>α</i><sub>GB</sub> constituents. Homogeneous deformation in large areas only reduces damage to a limited extent. It is crucial to improve the strength to resist cracking and wear, but it is of little significance to improve the ductility. However, when <i>F</i><sub>w</sub> is far less than <i>R</i><sub>m</sub>, coordinated deformation ability reflected by ductility plays a more important role. The deformation mechanism mainly manifests as localized deformation of <i>β</i> and <i>α</i><sub>GB</sub> constituents (kinking induced by twinning and spheroidizing). A unique composite structure of nano-grained/lamellar layer and localized deformation transition layer reduces fretting damage by five times compared with a single nano-grained layer. Only when the strength is great enough, improving the plasticity can reduce wear. This study can provide a principle for designing fretting damage resistant alloys.\\n</p>\",\"PeriodicalId\":12442,\"journal\":{\"name\":\"Friction\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Friction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40544-024-0870-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-024-0870-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

高强度钛紧固件的摩擦磨损已造成大量灾难性事故。传统观点认为,高强度和优异的延展性可以减少摩擦磨损。然而,在外加法向应力(Fw)作用下,强度和延展性是否相互矛盾以及二者的合理匹配策略仍是令人困惑的问题。在此,我们通过分析几种含有不同α析出物特征的样品的亚表面-微结构变形机理,首次设计了在 Fw 与材料抗拉强度(Rm)的不同匹配关系下提高抗摩擦磨损性能的策略。研究发现,当 Fw 大于 Rm 或 Fw 几乎等于 Rm 时,变形机制主要表现为 β 和 αGB 成分的严重晶粒破碎。大面积的均匀变形只能在有限程度上减少损伤。提高强度以抵抗开裂和磨损至关重要,但提高延展性意义不大。然而,当 Fw 远小于 Rm 时,延展性所反映的协调变形能力就会发挥更重要的作用。变形机制主要表现为 β 和 αGB 成分的局部变形(孪晶和球化引起的扭结)。纳米颗粒/层状层和局部变形过渡层的独特复合结构与单一纳米颗粒层相比,可将摩擦损伤降低五倍。只有当强度足够大时,提高塑性才能减少磨损。这项研究为设计抗烧蚀损伤合金提供了一个原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Subsurface deformation mechanism and the interplay relationship between strength–ductility and fretting wear resistance during fretting of a high-strength titanium alloy

Subsurface deformation mechanism and the interplay relationship between strength–ductility and fretting wear resistance during fretting of a high-strength titanium alloy

Fretting wear damage of high-strength titanium fasteners has caused a large number of disastrous accidents. Traditionally, it is believed that both high strength and excellent ductility can reduce fretting wear damage. However, whether strength and ductility are contradictory or not and their appropriate matching strategy under the external applied normal stress (Fw) are still confusing problems. Here, by analyzing the subsurface-microstructure deformation mechanism of several samples containing various α precipitate features, for the first time, we design strategies to improve fretting damage resistance under different matching relation between Fw and the tensile strength of materials (Rm). It is found that when Fw is greater than Rm or Fw is nearly equivalent to Rm, the deformation mechanism mainly manifests as serious grain fragmentation of β and αGB constituents. Homogeneous deformation in large areas only reduces damage to a limited extent. It is crucial to improve the strength to resist cracking and wear, but it is of little significance to improve the ductility. However, when Fw is far less than Rm, coordinated deformation ability reflected by ductility plays a more important role. The deformation mechanism mainly manifests as localized deformation of β and αGB constituents (kinking induced by twinning and spheroidizing). A unique composite structure of nano-grained/lamellar layer and localized deformation transition layer reduces fretting damage by five times compared with a single nano-grained layer. Only when the strength is great enough, improving the plasticity can reduce wear. This study can provide a principle for designing fretting damage resistant alloys.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信