摩擦片孔结构对高速列车制动器摩擦学性能的影响

IF 6.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Friction Pub Date : 2024-06-28 DOI:10.1007/s40544-023-0855-2
Yuanke Wu, Wei Chen, Youguang Zhu, Zaiyu Xiang, Honghua Qian, Jiliang Mo, Zhongrong Zhou
{"title":"摩擦片孔结构对高速列车制动器摩擦学性能的影响","authors":"Yuanke Wu, Wei Chen, Youguang Zhu, Zaiyu Xiang, Honghua Qian, Jiliang Mo, Zhongrong Zhou","doi":"10.1007/s40544-023-0855-2","DOIUrl":null,"url":null,"abstract":"<p>Three triangular friction block configurations are commonly employed in high-speed train brake systems, namely, unperforated, perforated configuration with one circular hole, and perforated with three circular holes. In this study, we adopted these friction block types to investigate the effect of perforated friction block configurations on the brake performance of high-speed trains based on a self-developed brake test rig. The results indicate the significant impact of the number of the holes on the wear behavior, temperature distribution, and vibration characteristics of the brake interface. The friction surface of the unperforated block is covered by wear debris, while the perforated blocks produce less wear debris. Furthermore, the one-hole block exhibits a more uniform temperature distribution and better vibration behavior than that with three holes. The friction brake is a dynamic process, during which separation and attachment between the pad and disc alternatively occur, and the perforated structure on the friction block can both trap and expel the wear debris.\n</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"180 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of friction block hole configurations on the brake tribological performance of high-speed trains\",\"authors\":\"Yuanke Wu, Wei Chen, Youguang Zhu, Zaiyu Xiang, Honghua Qian, Jiliang Mo, Zhongrong Zhou\",\"doi\":\"10.1007/s40544-023-0855-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Three triangular friction block configurations are commonly employed in high-speed train brake systems, namely, unperforated, perforated configuration with one circular hole, and perforated with three circular holes. In this study, we adopted these friction block types to investigate the effect of perforated friction block configurations on the brake performance of high-speed trains based on a self-developed brake test rig. The results indicate the significant impact of the number of the holes on the wear behavior, temperature distribution, and vibration characteristics of the brake interface. The friction surface of the unperforated block is covered by wear debris, while the perforated blocks produce less wear debris. Furthermore, the one-hole block exhibits a more uniform temperature distribution and better vibration behavior than that with three holes. The friction brake is a dynamic process, during which separation and attachment between the pad and disc alternatively occur, and the perforated structure on the friction block can both trap and expel the wear debris.\\n</p>\",\"PeriodicalId\":12442,\"journal\":{\"name\":\"Friction\",\"volume\":\"180 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Friction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40544-023-0855-2\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-023-0855-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

高速列车制动系统通常采用三种三角形摩擦片结构,即无穿孔、带一个圆孔的穿孔结构和带三个圆孔的穿孔结构。在本研究中,我们采用这些摩擦片类型,基于自主开发的制动试验台,研究了穿孔摩擦片配置对高速列车制动性能的影响。结果表明,孔的数量对制动界面的磨损行为、温度分布和振动特性有显著影响。无孔制动块的摩擦表面被磨损碎屑覆盖,而有孔制动块产生的磨损碎屑较少。此外,与三孔摩擦块相比,单孔摩擦块的温度分布更均匀,振动特性更好。摩擦制动是一个动态过程,在这一过程中,摩擦片和制动盘之间会交替发生分离和附着,而摩擦块上的穿孔结构既能截留又能排出磨损碎屑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The effect of friction block hole configurations on the brake tribological performance of high-speed trains

The effect of friction block hole configurations on the brake tribological performance of high-speed trains

Three triangular friction block configurations are commonly employed in high-speed train brake systems, namely, unperforated, perforated configuration with one circular hole, and perforated with three circular holes. In this study, we adopted these friction block types to investigate the effect of perforated friction block configurations on the brake performance of high-speed trains based on a self-developed brake test rig. The results indicate the significant impact of the number of the holes on the wear behavior, temperature distribution, and vibration characteristics of the brake interface. The friction surface of the unperforated block is covered by wear debris, while the perforated blocks produce less wear debris. Furthermore, the one-hole block exhibits a more uniform temperature distribution and better vibration behavior than that with three holes. The friction brake is a dynamic process, during which separation and attachment between the pad and disc alternatively occur, and the perforated structure on the friction block can both trap and expel the wear debris.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信