风险与运气的形而上学

Noûs Pub Date : 2024-06-26 DOI:10.1111/nous.12516
Jaakko Hirvelä
{"title":"风险与运气的形而上学","authors":"Jaakko Hirvelä","doi":"10.1111/nous.12516","DOIUrl":null,"url":null,"abstract":"According to the modal account of luck it is a matter of luck that <jats:italic>p</jats:italic> if <jats:italic>p</jats:italic> is true at the actual world, but false in a wide‐range of nearby worlds. According to the modal account of risk, it is risky that <jats:italic>p</jats:italic> if <jats:italic>p</jats:italic> is true at some close world. I argue that the modal accounts of luck and risk do not mesh well together. The views entail that <jats:italic>p</jats:italic> can be both maximally risky and maximally lucky, but there is nothing which is both maximally lucky and maximally risky. I offer a novel theory of risk that fits together with the modal account of luck and demonstrate that it is both extensionally and formally superior to extant proposals.","PeriodicalId":501006,"journal":{"name":"Noûs","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metaphysics of risk and luck\",\"authors\":\"Jaakko Hirvelä\",\"doi\":\"10.1111/nous.12516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the modal account of luck it is a matter of luck that <jats:italic>p</jats:italic> if <jats:italic>p</jats:italic> is true at the actual world, but false in a wide‐range of nearby worlds. According to the modal account of risk, it is risky that <jats:italic>p</jats:italic> if <jats:italic>p</jats:italic> is true at some close world. I argue that the modal accounts of luck and risk do not mesh well together. The views entail that <jats:italic>p</jats:italic> can be both maximally risky and maximally lucky, but there is nothing which is both maximally lucky and maximally risky. I offer a novel theory of risk that fits together with the modal account of luck and demonstrate that it is both extensionally and formally superior to extant proposals.\",\"PeriodicalId\":501006,\"journal\":{\"name\":\"Noûs\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Noûs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/nous.12516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noûs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/nous.12516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据 "运气 "的模态解释,如果 p 在实际世界中为真,而在附近的一系列世界中为假,那么 p 就是一个运气问题。根据风险的模态解释,如果p在某个近似世界中为真,那么p就是有风险的。我认为,关于运气和风险的模态解释并不能很好地融合在一起。这两种观点都会导致p既可能是风险最大的,也可能是运气最大的,但没有什么东西既是运气最大的,也是风险最大的。我提出了一种新的风险理论,它与运气的模态论述相吻合,并证明它在外延和形式上都优于现有的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metaphysics of risk and luck
According to the modal account of luck it is a matter of luck that p if p is true at the actual world, but false in a wide‐range of nearby worlds. According to the modal account of risk, it is risky that p if p is true at some close world. I argue that the modal accounts of luck and risk do not mesh well together. The views entail that p can be both maximally risky and maximally lucky, but there is nothing which is both maximally lucky and maximally risky. I offer a novel theory of risk that fits together with the modal account of luck and demonstrate that it is both extensionally and formally superior to extant proposals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信