{"title":"监测催化纳米材料的作用","authors":"Katrin F. Domke","doi":"10.1038/s41929-024-01171-y","DOIUrl":null,"url":null,"abstract":"Rational design of improved electrocatalysts requires a profound understanding of the catalyst’s active sites during the reaction. However, molecule conversion occurs on the few-nanometre scale and operando tools for simultaneous nanoscale chemical, electronic and structural investigation are scarce. Now, the geometric and electronic creation and evolution of individual active sites during the hydrogen evolution reaction on MoS2 has been unravelled using electrochemical tip-enhanced Raman spectroscopy.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 6","pages":"613-614"},"PeriodicalIF":42.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring catalytic nanosites in action\",\"authors\":\"Katrin F. Domke\",\"doi\":\"10.1038/s41929-024-01171-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rational design of improved electrocatalysts requires a profound understanding of the catalyst’s active sites during the reaction. However, molecule conversion occurs on the few-nanometre scale and operando tools for simultaneous nanoscale chemical, electronic and structural investigation are scarce. Now, the geometric and electronic creation and evolution of individual active sites during the hydrogen evolution reaction on MoS2 has been unravelled using electrochemical tip-enhanced Raman spectroscopy.\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":\"7 6\",\"pages\":\"613-614\"},\"PeriodicalIF\":42.8000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41929-024-01171-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-024-01171-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Rational design of improved electrocatalysts requires a profound understanding of the catalyst’s active sites during the reaction. However, molecule conversion occurs on the few-nanometre scale and operando tools for simultaneous nanoscale chemical, electronic and structural investigation are scarce. Now, the geometric and electronic creation and evolution of individual active sites during the hydrogen evolution reaction on MoS2 has been unravelled using electrochemical tip-enhanced Raman spectroscopy.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.