通过有机半导体中的构象锁定和环融合调制优化稳定性

IF 3.9 2区 化学 Q2 POLYMER SCIENCE
Salahuddin S. Attar, Bahattin Bademci, Maciej Barłóg, Dušan Sredojević, Hessa Al-Thani, Sandra Dudley, Konstantinos Kakosimos, Hassan S. Bazzi, Muhammad Tariq Sajjad and Mohammed Al-Hashimi
{"title":"通过有机半导体中的构象锁定和环融合调制优化稳定性","authors":"Salahuddin S. Attar, Bahattin Bademci, Maciej Barłóg, Dušan Sredojević, Hessa Al-Thani, Sandra Dudley, Konstantinos Kakosimos, Hassan S. Bazzi, Muhammad Tariq Sajjad and Mohammed Al-Hashimi","doi":"10.1039/D4PY00246F","DOIUrl":null,"url":null,"abstract":"<p >The newly synthesized fused tetrathienophenanthroline (TTP) acceptor molecule, achieved <em>via</em> one-pot superacid catalyzed intramolecular cyclization, offers a promising alternative to the conventional benzodithiophene-4,8-dione (BDD) moieties in high-performance photovoltaic materials. The <em>S</em>, <em>N</em> heteroacene type TTP core exhibits complete planarity and enhanced electron richness compared to the BDD core, paving the way for fine tuning the morphology, optoelectronic properties, and frontier molecular energy levels in donor–acceptor-type materials. Side-chain engineering resulted in a balanced electron-rich nature of the monomer and enhanced solubility/processability of the resulting polymers. These molecular strategies for PTTP1-BDT contribute to improved stability and morphology, crucial for organic electronic device applications. Incorporation of PTTP1-BDT and PBDB-T as donor polymers in organic photovoltaics resulted in a power conversion efficiency (PCE) of ∼3% for PTTP1-BDT and ∼8% for PBDB-T. The compromise in PTTP1-BDT based device efficiency was attributed to lower and unbalanced charge mobility.</p>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":" 29","pages":" 3010-3017"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing stability through conformational locking and ring fusion modulation in organic semiconductors†\",\"authors\":\"Salahuddin S. Attar, Bahattin Bademci, Maciej Barłóg, Dušan Sredojević, Hessa Al-Thani, Sandra Dudley, Konstantinos Kakosimos, Hassan S. Bazzi, Muhammad Tariq Sajjad and Mohammed Al-Hashimi\",\"doi\":\"10.1039/D4PY00246F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The newly synthesized fused tetrathienophenanthroline (TTP) acceptor molecule, achieved <em>via</em> one-pot superacid catalyzed intramolecular cyclization, offers a promising alternative to the conventional benzodithiophene-4,8-dione (BDD) moieties in high-performance photovoltaic materials. The <em>S</em>, <em>N</em> heteroacene type TTP core exhibits complete planarity and enhanced electron richness compared to the BDD core, paving the way for fine tuning the morphology, optoelectronic properties, and frontier molecular energy levels in donor–acceptor-type materials. Side-chain engineering resulted in a balanced electron-rich nature of the monomer and enhanced solubility/processability of the resulting polymers. These molecular strategies for PTTP1-BDT contribute to improved stability and morphology, crucial for organic electronic device applications. Incorporation of PTTP1-BDT and PBDB-T as donor polymers in organic photovoltaics resulted in a power conversion efficiency (PCE) of ∼3% for PTTP1-BDT and ∼8% for PBDB-T. The compromise in PTTP1-BDT based device efficiency was attributed to lower and unbalanced charge mobility.</p>\",\"PeriodicalId\":100,\"journal\":{\"name\":\"Polymer Chemistry\",\"volume\":\" 29\",\"pages\":\" 3010-3017\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/py/d4py00246f\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/py/d4py00246f","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

新合成的融合四噻吩菲罗啉(TTP)受体分子是通过一锅超酸催化分子内环化实现的,它为高性能光伏材料中传统的苯并二噻吩-4,8-二酮(BDD)分子提供了一种有前途的替代品。与 BDD 核心相比,S、N 杂芳烯型 TTP 核心具有完全的平面性和更高的电子富集度,为供体-受体型材料中形态、光电和前沿分子能级的微调铺平了道路。侧链工程可平衡单体的电子富集特性,并提高聚合物的可溶性/可加工性。PTTP-BDT 中的这些分子策略有助于改善稳定性和形态,这对有机电子设备的应用至关重要。将 PTTP-BDT 和 PBDB-T 作为给体分子加入有机光伏器件中,PTTP-BDT 的功率转换效率 (PCE) 约为 3%,PBDB-T 约为 8%。基于 PTTP-BDT 的器件效率降低的原因是电荷迁移率较低且不平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimizing stability through conformational locking and ring fusion modulation in organic semiconductors†

Optimizing stability through conformational locking and ring fusion modulation in organic semiconductors†

The newly synthesized fused tetrathienophenanthroline (TTP) acceptor molecule, achieved via one-pot superacid catalyzed intramolecular cyclization, offers a promising alternative to the conventional benzodithiophene-4,8-dione (BDD) moieties in high-performance photovoltaic materials. The S, N heteroacene type TTP core exhibits complete planarity and enhanced electron richness compared to the BDD core, paving the way for fine tuning the morphology, optoelectronic properties, and frontier molecular energy levels in donor–acceptor-type materials. Side-chain engineering resulted in a balanced electron-rich nature of the monomer and enhanced solubility/processability of the resulting polymers. These molecular strategies for PTTP1-BDT contribute to improved stability and morphology, crucial for organic electronic device applications. Incorporation of PTTP1-BDT and PBDB-T as donor polymers in organic photovoltaics resulted in a power conversion efficiency (PCE) of ∼3% for PTTP1-BDT and ∼8% for PBDB-T. The compromise in PTTP1-BDT based device efficiency was attributed to lower and unbalanced charge mobility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Chemistry
Polymer Chemistry POLYMER SCIENCE-
CiteScore
8.60
自引率
8.70%
发文量
535
审稿时长
1.7 months
期刊介绍: Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信