{"title":"观测轨道抽水","authors":"Hiroki Hayashi, Dongwook Go, Satoshi Haku, Yuriy Mokrousov, Kazuya Ando","doi":"10.1038/s41928-024-01193-1","DOIUrl":null,"url":null,"abstract":"Electrons carry both spin and orbital angular momentum. The search for phenomena that generate a flow of spin angular momentum—a spin current—has led to the development of spintronics. In contrast, the orbital counterpart of spin current—an orbital current—has largely been overlooked, and the generation of an orbital current remains challenging. Here we report the observation of orbital-current generation from magnetization dynamics: orbital pumping. We show that orbital pumping in nickel/titanium bilayers injects an orbital current into the titanium layer, which we detect through the inverse orbital Hall effect. Orbital pumping is the orbital counterpart of spin pumping, a versatile and powerful mechanism for spin-current generation. Our findings could, thus, provide a promising approach for generating orbital currents and could help in the development of the orbital analogue of spintronics: orbitronics. In ferromagnetic/non-magnetic bilayers of nickel/titanium, the precession of magnetization in the nickel layer can inject an orbital current into the titanium layer through orbital pumping, the orbital counterpart of spin pumping.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observation of orbital pumping\",\"authors\":\"Hiroki Hayashi, Dongwook Go, Satoshi Haku, Yuriy Mokrousov, Kazuya Ando\",\"doi\":\"10.1038/s41928-024-01193-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrons carry both spin and orbital angular momentum. The search for phenomena that generate a flow of spin angular momentum—a spin current—has led to the development of spintronics. In contrast, the orbital counterpart of spin current—an orbital current—has largely been overlooked, and the generation of an orbital current remains challenging. Here we report the observation of orbital-current generation from magnetization dynamics: orbital pumping. We show that orbital pumping in nickel/titanium bilayers injects an orbital current into the titanium layer, which we detect through the inverse orbital Hall effect. Orbital pumping is the orbital counterpart of spin pumping, a versatile and powerful mechanism for spin-current generation. Our findings could, thus, provide a promising approach for generating orbital currents and could help in the development of the orbital analogue of spintronics: orbitronics. In ferromagnetic/non-magnetic bilayers of nickel/titanium, the precession of magnetization in the nickel layer can inject an orbital current into the titanium layer through orbital pumping, the orbital counterpart of spin pumping.\",\"PeriodicalId\":19064,\"journal\":{\"name\":\"Nature Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":33.7000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41928-024-01193-1\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01193-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Electrons carry both spin and orbital angular momentum. The search for phenomena that generate a flow of spin angular momentum—a spin current—has led to the development of spintronics. In contrast, the orbital counterpart of spin current—an orbital current—has largely been overlooked, and the generation of an orbital current remains challenging. Here we report the observation of orbital-current generation from magnetization dynamics: orbital pumping. We show that orbital pumping in nickel/titanium bilayers injects an orbital current into the titanium layer, which we detect through the inverse orbital Hall effect. Orbital pumping is the orbital counterpart of spin pumping, a versatile and powerful mechanism for spin-current generation. Our findings could, thus, provide a promising approach for generating orbital currents and could help in the development of the orbital analogue of spintronics: orbitronics. In ferromagnetic/non-magnetic bilayers of nickel/titanium, the precession of magnetization in the nickel layer can inject an orbital current into the titanium layer through orbital pumping, the orbital counterpart of spin pumping.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.