Yu Wang, Yu Ren, Tingting Wang, Dongliang Li, Hongxing Cai, Boyu Ji
{"title":"利用多光谱 IPPG 技术结合深度学习算法实现高精度心率检测。","authors":"Yu Wang, Yu Ren, Tingting Wang, Dongliang Li, Hongxing Cai, Boyu Ji","doi":"10.1002/jbio.202400119","DOIUrl":null,"url":null,"abstract":"<p>Image Photoplethysmography (IPPG) technology is a noncontact physiological parameter detection technology, which has been widely used in heart rate (HR) detection. However, traditional imaging devices still have issues such as narrower receiving spectral range and inferior motion detection performance. In this paper, we propose a HR detection method based on multi-spectral video. Our method combining multispectral imaging with IPPG technology provides more accurate physiological information. To realize real-time evaluation of HR directly from facial multispectral videos, we propose a new end-to-end neural network, namely IPPGResNet18. The IPPGResNet18 model was trained on the multispectral video dataset from which better results were achieved: MAE = 2.793, RMSE = 3.695, SD = 3.707, <i>p</i> = 0.304. The experimental results demonstrate a high accuracy of HR detection under motion state using this detection method. In respect of real-time monitoring of HR during movement, our method is obviously superior to the conventional technical solutions.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-accuracy heart rate detection using multispectral IPPG technology combined with a deep learning algorithm\",\"authors\":\"Yu Wang, Yu Ren, Tingting Wang, Dongliang Li, Hongxing Cai, Boyu Ji\",\"doi\":\"10.1002/jbio.202400119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Image Photoplethysmography (IPPG) technology is a noncontact physiological parameter detection technology, which has been widely used in heart rate (HR) detection. However, traditional imaging devices still have issues such as narrower receiving spectral range and inferior motion detection performance. In this paper, we propose a HR detection method based on multi-spectral video. Our method combining multispectral imaging with IPPG technology provides more accurate physiological information. To realize real-time evaluation of HR directly from facial multispectral videos, we propose a new end-to-end neural network, namely IPPGResNet18. The IPPGResNet18 model was trained on the multispectral video dataset from which better results were achieved: MAE = 2.793, RMSE = 3.695, SD = 3.707, <i>p</i> = 0.304. The experimental results demonstrate a high accuracy of HR detection under motion state using this detection method. In respect of real-time monitoring of HR during movement, our method is obviously superior to the conventional technical solutions.</p>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400119\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400119","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
High-accuracy heart rate detection using multispectral IPPG technology combined with a deep learning algorithm
Image Photoplethysmography (IPPG) technology is a noncontact physiological parameter detection technology, which has been widely used in heart rate (HR) detection. However, traditional imaging devices still have issues such as narrower receiving spectral range and inferior motion detection performance. In this paper, we propose a HR detection method based on multi-spectral video. Our method combining multispectral imaging with IPPG technology provides more accurate physiological information. To realize real-time evaluation of HR directly from facial multispectral videos, we propose a new end-to-end neural network, namely IPPGResNet18. The IPPGResNet18 model was trained on the multispectral video dataset from which better results were achieved: MAE = 2.793, RMSE = 3.695, SD = 3.707, p = 0.304. The experimental results demonstrate a high accuracy of HR detection under motion state using this detection method. In respect of real-time monitoring of HR during movement, our method is obviously superior to the conventional technical solutions.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.