S Wei, K Liu, H Wu, J Hu, J He, G Li, B Liu, W Yang
{"title":"mt2 通过清除 ros 抑制破骨细胞生成。","authors":"S Wei, K Liu, H Wu, J Hu, J He, G Li, B Liu, W Yang","doi":"10.4183/aeb.2023.447","DOIUrl":null,"url":null,"abstract":"<p><strong>Context and objective: </strong>Reactive oxygen species (ROS) produced under oxidative stress is important for osteoclastogenesis. As a major member of the metallothionein (MT) family, metallothionein2 (MT2) can scavenge ROS in osteoblasts. However, the role of MT2 in osteoclastogenesis and ROS production in osteoclast precursors (OCPs) is unknown.</p><p><strong>Material and methods: </strong>In this study, we first investigated MT2 expression level in osteoporotic model mice. Next, we explored the roles of MT2 in osteoclastic differentiation and ROS production in OCPs. Ultimately, via rescue assays based on hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), the significance of ROS in MT-2-regulated osteoclastic differentiation was further elucidated.</p><p><strong>Results: </strong>Compared with sham operated (Sham) mice, ovariectomized (OVX) mice displayed bone marrow primary OCPs (Ly6C+CD11b-) having higher ROS levels and lower MT2 expression. MT2 overexpression inhibited the formation of mature osteoclasts, while MT2 knockdown was contrary. Moreover, MT2 overexpression inhibited ROS production in OCPs, while MT2 knockdown exhibited the opposite effects. Notably, the inhibitory effect of MT2 overexpression on osteoclastogenesis and ROS production was blocked by the addition of H<sub>2</sub>O<sub>2</sub>.</p><p><strong>Conclusion: </strong>MT2 inhibits osteoclastogenesis through repressing ROS production in OCPs, which indicates that the strategy of upregulating MT2 in OCPs may be applied to the clinical treatment of osteoclastic bone loss.</p>","PeriodicalId":0,"journal":{"name":"","volume":"19 4","pages":"447-455"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197834/pdf/","citationCount":"0","resultStr":"{\"title\":\"MT2 INHIBITS OSTEOCLASTOGENESIS BY SCAVENGING ROS.\",\"authors\":\"S Wei, K Liu, H Wu, J Hu, J He, G Li, B Liu, W Yang\",\"doi\":\"10.4183/aeb.2023.447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Context and objective: </strong>Reactive oxygen species (ROS) produced under oxidative stress is important for osteoclastogenesis. As a major member of the metallothionein (MT) family, metallothionein2 (MT2) can scavenge ROS in osteoblasts. However, the role of MT2 in osteoclastogenesis and ROS production in osteoclast precursors (OCPs) is unknown.</p><p><strong>Material and methods: </strong>In this study, we first investigated MT2 expression level in osteoporotic model mice. Next, we explored the roles of MT2 in osteoclastic differentiation and ROS production in OCPs. Ultimately, via rescue assays based on hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), the significance of ROS in MT-2-regulated osteoclastic differentiation was further elucidated.</p><p><strong>Results: </strong>Compared with sham operated (Sham) mice, ovariectomized (OVX) mice displayed bone marrow primary OCPs (Ly6C+CD11b-) having higher ROS levels and lower MT2 expression. MT2 overexpression inhibited the formation of mature osteoclasts, while MT2 knockdown was contrary. Moreover, MT2 overexpression inhibited ROS production in OCPs, while MT2 knockdown exhibited the opposite effects. Notably, the inhibitory effect of MT2 overexpression on osteoclastogenesis and ROS production was blocked by the addition of H<sub>2</sub>O<sub>2</sub>.</p><p><strong>Conclusion: </strong>MT2 inhibits osteoclastogenesis through repressing ROS production in OCPs, which indicates that the strategy of upregulating MT2 in OCPs may be applied to the clinical treatment of osteoclastic bone loss.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":\"19 4\",\"pages\":\"447-455\"},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197834/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4183/aeb.2023.447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4183/aeb.2023.447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
MT2 INHIBITS OSTEOCLASTOGENESIS BY SCAVENGING ROS.
Context and objective: Reactive oxygen species (ROS) produced under oxidative stress is important for osteoclastogenesis. As a major member of the metallothionein (MT) family, metallothionein2 (MT2) can scavenge ROS in osteoblasts. However, the role of MT2 in osteoclastogenesis and ROS production in osteoclast precursors (OCPs) is unknown.
Material and methods: In this study, we first investigated MT2 expression level in osteoporotic model mice. Next, we explored the roles of MT2 in osteoclastic differentiation and ROS production in OCPs. Ultimately, via rescue assays based on hydrogen peroxide (H2O2), the significance of ROS in MT-2-regulated osteoclastic differentiation was further elucidated.
Results: Compared with sham operated (Sham) mice, ovariectomized (OVX) mice displayed bone marrow primary OCPs (Ly6C+CD11b-) having higher ROS levels and lower MT2 expression. MT2 overexpression inhibited the formation of mature osteoclasts, while MT2 knockdown was contrary. Moreover, MT2 overexpression inhibited ROS production in OCPs, while MT2 knockdown exhibited the opposite effects. Notably, the inhibitory effect of MT2 overexpression on osteoclastogenesis and ROS production was blocked by the addition of H2O2.
Conclusion: MT2 inhibits osteoclastogenesis through repressing ROS production in OCPs, which indicates that the strategy of upregulating MT2 in OCPs may be applied to the clinical treatment of osteoclastic bone loss.