Yves S Dos Santos, Mateus Rossato, Neice B Carneiro, Marcos Franken, Flávio Antônio de Souza Castro, Kelly de Jesus, Karla de Jesus
{"title":"竞技游泳运动员不同角速度之间肩部扭矩不对称的程度和方向。","authors":"Yves S Dos Santos, Mateus Rossato, Neice B Carneiro, Marcos Franken, Flávio Antônio de Souza Castro, Kelly de Jesus, Karla de Jesus","doi":"10.1080/14763141.2024.2370978","DOIUrl":null,"url":null,"abstract":"<p><p>Asymmetries in swimming can be the result of poor technique or coordination between limbs, reducing the ability to produce propulsive force and increasing resistive drag. Therefore, this study aimed to compare the magnitude and determine the consistency of isokinetic peak torque asymmetries between the angular velocities of in the shoulder joint movements of internal and external rotation, flexion, and extension. Twenty-one competitive swimmers performed concentric actions at 60°/s (3 repetitions) and 180°/s (20 repetitions) in the movements of internal and external rotation, flexion, and extension of the shoulders using an isokinetic dynamometer, with the peak torque and asymmetry index being common metrics across the tests. The results showed a greater magnitude of asymmetry in internal rotation (16.86 vs. 9.86; <i>p</i> = 0.007) and flexion (12.06 vs. 7.35; <i>p</i> = 0.008) at 60 vs. 180°/s, respectively. The agreement levels of the direction of asymmetries between angular velocities were fair to substantial (Kappa: 0.40 to 0.69). Evaluating isokinetic torque in different movements and angular velocities resulted in different levels of asymmetry. Muscle force asymmetries can impact propulsion efficiency and movement coordination during swimming. Understanding muscle asymmetries allows the development of targeted and individualised training programmes to correct strength imbalances.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1928-1942"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnitude and direction of shoulder torque asymmetries between different angular velocities in competitive swimmers.\",\"authors\":\"Yves S Dos Santos, Mateus Rossato, Neice B Carneiro, Marcos Franken, Flávio Antônio de Souza Castro, Kelly de Jesus, Karla de Jesus\",\"doi\":\"10.1080/14763141.2024.2370978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Asymmetries in swimming can be the result of poor technique or coordination between limbs, reducing the ability to produce propulsive force and increasing resistive drag. Therefore, this study aimed to compare the magnitude and determine the consistency of isokinetic peak torque asymmetries between the angular velocities of in the shoulder joint movements of internal and external rotation, flexion, and extension. Twenty-one competitive swimmers performed concentric actions at 60°/s (3 repetitions) and 180°/s (20 repetitions) in the movements of internal and external rotation, flexion, and extension of the shoulders using an isokinetic dynamometer, with the peak torque and asymmetry index being common metrics across the tests. The results showed a greater magnitude of asymmetry in internal rotation (16.86 vs. 9.86; <i>p</i> = 0.007) and flexion (12.06 vs. 7.35; <i>p</i> = 0.008) at 60 vs. 180°/s, respectively. The agreement levels of the direction of asymmetries between angular velocities were fair to substantial (Kappa: 0.40 to 0.69). Evaluating isokinetic torque in different movements and angular velocities resulted in different levels of asymmetry. Muscle force asymmetries can impact propulsion efficiency and movement coordination during swimming. Understanding muscle asymmetries allows the development of targeted and individualised training programmes to correct strength imbalances.</p>\",\"PeriodicalId\":49482,\"journal\":{\"name\":\"Sports Biomechanics\",\"volume\":\" \",\"pages\":\"1928-1942\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sports Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14763141.2024.2370978\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2024.2370978","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Magnitude and direction of shoulder torque asymmetries between different angular velocities in competitive swimmers.
Asymmetries in swimming can be the result of poor technique or coordination between limbs, reducing the ability to produce propulsive force and increasing resistive drag. Therefore, this study aimed to compare the magnitude and determine the consistency of isokinetic peak torque asymmetries between the angular velocities of in the shoulder joint movements of internal and external rotation, flexion, and extension. Twenty-one competitive swimmers performed concentric actions at 60°/s (3 repetitions) and 180°/s (20 repetitions) in the movements of internal and external rotation, flexion, and extension of the shoulders using an isokinetic dynamometer, with the peak torque and asymmetry index being common metrics across the tests. The results showed a greater magnitude of asymmetry in internal rotation (16.86 vs. 9.86; p = 0.007) and flexion (12.06 vs. 7.35; p = 0.008) at 60 vs. 180°/s, respectively. The agreement levels of the direction of asymmetries between angular velocities were fair to substantial (Kappa: 0.40 to 0.69). Evaluating isokinetic torque in different movements and angular velocities resulted in different levels of asymmetry. Muscle force asymmetries can impact propulsion efficiency and movement coordination during swimming. Understanding muscle asymmetries allows the development of targeted and individualised training programmes to correct strength imbalances.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.