Hui Jing, Xubo Cao, Ke Li, Yuanyuan Liu, Meng Meng, Shuan Liu, Mengjie Ye, Jinghao Zhang, Yanmin Wu
{"title":"PLA2G2D通过表达PD-L1的细胞外囊泡调节T细胞的免疫功能,从而促进非小细胞肺癌的免疫逃逸。","authors":"Hui Jing, Xubo Cao, Ke Li, Yuanyuan Liu, Meng Meng, Shuan Liu, Mengjie Ye, Jinghao Zhang, Yanmin Wu","doi":"10.1111/sji.13393","DOIUrl":null,"url":null,"abstract":"<p><p>It is urgent to explore factors affecting immunotherapy efficacy to benefit non-small cell lung cancer (NSCLC) patient survival. Bioinformatics predicted genes associated with programmed cell death ligand 1 (PD-L1) expression and analysed phospholipase A2 group IID (PLA2G2D) expression in NSCLC. BODIPY 493/503 dye staining and kits detected lipids, triglycerides, and phospholipids in H1299 cells, respectively. Extracellular vesicles (EVs) were extracted for morphology and size assessment using electron microscopy. Western blot assayed CD9, CD63, HSP90, EVs-PD-L1, PD-L1, and PLA2G2D expression. CCK-8, LDH, and ELISA tested proliferation and toxicity of CD8<sup>+</sup> T cells, interleukin-2, and interferon-gamma secretion, respectively. PLA2G2D, PD-L1, and Ki67 expression was detected by immunohistochemistry. Immunofluorescence assayed PLA2G2D localisation and CD8<sup>+</sup> T cell content. Flow cytometry assessed PD-L1 and CD8 expression. In NSCLC, upregulated EVs-PD-L1 and clinical characteristics showed a strong correlation. H1299 cells with overexpression PD-L1 significantly reduced proliferation, toxicity of CD8<sup>+</sup> T cells, and interleukin-2 and interferon-gamma levels. Bioinformatics revealed positive correlations between PLA2G2D and overexpressed PD-L1. PLA2G2D was expressed in macrophages and dendritic cells in NSCLC tissue. Overexpression PLA2G2D (oe-PLA2G2D) increased lipids, triglycerides, and phospholipids contents in H1299 cells. oe-PLA2G2D significantly reduced proliferation, toxicity of CD8<sup>+</sup> T cells, and interleukin-2 and interferon-gamma levels. si-PD-L1 restored inhibition of oe-PLA2G2D on CD8<sup>+</sup> T cells. oe-PLA2G2D significantly increased mice tumour volume and weight, upregulated expression of blood EVs-PD-L1 and tissue PD-L1, PLA2G2D, Ki67, and decreased CD8<sup>+</sup> T cell content. PLA2G2D facilitated immune escape in NSCLC by regulating CD8<sup>+</sup> T cell immune function by upregulating EVs-PD-L1.</p>","PeriodicalId":21493,"journal":{"name":"Scandinavian Journal of Immunology","volume":" ","pages":"e13393"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PLA2G2D promotes immune escape in non-small cell lung cancer by regulating T cell immune function through PD-L1-expressing extracellular vesicles.\",\"authors\":\"Hui Jing, Xubo Cao, Ke Li, Yuanyuan Liu, Meng Meng, Shuan Liu, Mengjie Ye, Jinghao Zhang, Yanmin Wu\",\"doi\":\"10.1111/sji.13393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is urgent to explore factors affecting immunotherapy efficacy to benefit non-small cell lung cancer (NSCLC) patient survival. Bioinformatics predicted genes associated with programmed cell death ligand 1 (PD-L1) expression and analysed phospholipase A2 group IID (PLA2G2D) expression in NSCLC. BODIPY 493/503 dye staining and kits detected lipids, triglycerides, and phospholipids in H1299 cells, respectively. Extracellular vesicles (EVs) were extracted for morphology and size assessment using electron microscopy. Western blot assayed CD9, CD63, HSP90, EVs-PD-L1, PD-L1, and PLA2G2D expression. CCK-8, LDH, and ELISA tested proliferation and toxicity of CD8<sup>+</sup> T cells, interleukin-2, and interferon-gamma secretion, respectively. PLA2G2D, PD-L1, and Ki67 expression was detected by immunohistochemistry. Immunofluorescence assayed PLA2G2D localisation and CD8<sup>+</sup> T cell content. Flow cytometry assessed PD-L1 and CD8 expression. In NSCLC, upregulated EVs-PD-L1 and clinical characteristics showed a strong correlation. H1299 cells with overexpression PD-L1 significantly reduced proliferation, toxicity of CD8<sup>+</sup> T cells, and interleukin-2 and interferon-gamma levels. Bioinformatics revealed positive correlations between PLA2G2D and overexpressed PD-L1. PLA2G2D was expressed in macrophages and dendritic cells in NSCLC tissue. Overexpression PLA2G2D (oe-PLA2G2D) increased lipids, triglycerides, and phospholipids contents in H1299 cells. oe-PLA2G2D significantly reduced proliferation, toxicity of CD8<sup>+</sup> T cells, and interleukin-2 and interferon-gamma levels. si-PD-L1 restored inhibition of oe-PLA2G2D on CD8<sup>+</sup> T cells. oe-PLA2G2D significantly increased mice tumour volume and weight, upregulated expression of blood EVs-PD-L1 and tissue PD-L1, PLA2G2D, Ki67, and decreased CD8<sup>+</sup> T cell content. PLA2G2D facilitated immune escape in NSCLC by regulating CD8<sup>+</sup> T cell immune function by upregulating EVs-PD-L1.</p>\",\"PeriodicalId\":21493,\"journal\":{\"name\":\"Scandinavian Journal of Immunology\",\"volume\":\" \",\"pages\":\"e13393\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/sji.13393\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/sji.13393","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
PLA2G2D promotes immune escape in non-small cell lung cancer by regulating T cell immune function through PD-L1-expressing extracellular vesicles.
It is urgent to explore factors affecting immunotherapy efficacy to benefit non-small cell lung cancer (NSCLC) patient survival. Bioinformatics predicted genes associated with programmed cell death ligand 1 (PD-L1) expression and analysed phospholipase A2 group IID (PLA2G2D) expression in NSCLC. BODIPY 493/503 dye staining and kits detected lipids, triglycerides, and phospholipids in H1299 cells, respectively. Extracellular vesicles (EVs) were extracted for morphology and size assessment using electron microscopy. Western blot assayed CD9, CD63, HSP90, EVs-PD-L1, PD-L1, and PLA2G2D expression. CCK-8, LDH, and ELISA tested proliferation and toxicity of CD8+ T cells, interleukin-2, and interferon-gamma secretion, respectively. PLA2G2D, PD-L1, and Ki67 expression was detected by immunohistochemistry. Immunofluorescence assayed PLA2G2D localisation and CD8+ T cell content. Flow cytometry assessed PD-L1 and CD8 expression. In NSCLC, upregulated EVs-PD-L1 and clinical characteristics showed a strong correlation. H1299 cells with overexpression PD-L1 significantly reduced proliferation, toxicity of CD8+ T cells, and interleukin-2 and interferon-gamma levels. Bioinformatics revealed positive correlations between PLA2G2D and overexpressed PD-L1. PLA2G2D was expressed in macrophages and dendritic cells in NSCLC tissue. Overexpression PLA2G2D (oe-PLA2G2D) increased lipids, triglycerides, and phospholipids contents in H1299 cells. oe-PLA2G2D significantly reduced proliferation, toxicity of CD8+ T cells, and interleukin-2 and interferon-gamma levels. si-PD-L1 restored inhibition of oe-PLA2G2D on CD8+ T cells. oe-PLA2G2D significantly increased mice tumour volume and weight, upregulated expression of blood EVs-PD-L1 and tissue PD-L1, PLA2G2D, Ki67, and decreased CD8+ T cell content. PLA2G2D facilitated immune escape in NSCLC by regulating CD8+ T cell immune function by upregulating EVs-PD-L1.
期刊介绍:
This peer-reviewed international journal publishes original articles and reviews on all aspects of basic, translational and clinical immunology. The journal aims to provide high quality service to authors, and high quality articles for readers.
The journal accepts for publication material from investigators all over the world, which makes a significant contribution to basic, translational and clinical immunology.