{"title":"电针通过抑制海马小胶质细胞上的TLR4/NF-κB/NLRP3信号通路,改善PSCI大鼠的学习和记忆能力。","authors":"Jing Bian, Chunxu Liu, Xiang Li, Xiaoye Qin, Feng Wang, Lina Xuan, Weimin Zhang","doi":"10.1097/WNR.0000000000002067","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to investigate how electroacupuncture regulates the learning and memory abilities of poststroke cognitive impairment (PSCI) rats through the TLR4/NF-κB/NLRP3 signaling pathway on the hippocampal microglia. Thirty male rats were randomly divided into three groups: sham surgery group, PSCI model group, and electroacupuncture group, with 10 rats in each group. Middle cerebral artery occlusion was used to establish the PSCI model. The Zea Longa method was used to score the rats' neurological function. Electroacupuncture was utilized for 21 days to improve PSCI. The learning and memory abilities of rats were tested using the Morris water maze. Hematoxylin-eosin staining and immunofluorescence were used to find the hippocampus' pathological changes. The concentration of interleukin-1β, interleukin-6, tumor necrosis factor-α, and interleukin-18 were detected by ELISA. The mRNA expression levels of associated inflammatory corpuscles were measured by quantitative real-time PCR. The protein expression levels of TLR4, MyD88, NF-κB, and NLRP3 were measured using western blotting. Electroacupuncture improved not only the learning and memory abilities of PSCI rats but also hippocampal morphology. Electroacupuncture inhibited the activation of microglia and the TLR4/NF-κB/NLRP3 signaling pathway. Electroacupuncture also reduced proinflammatory factors and restrained the mRNA levels of NLRP3-associated inflammatory cytokines. Its mechanism was related to inhibiting the expression of the TLR4/NF-κB/NLRP3 signaling pathway, attenuating the release of inflammatory factors, and regulating the activation of hippocampal microglia in the brain.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":"780-789"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11236269/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electroacupuncture improves the learning and memory abilities of rats with PSCI by attenuating the TLR4/NF-κB/NLRP3 signaling pathway on the hippocampal microglia.\",\"authors\":\"Jing Bian, Chunxu Liu, Xiang Li, Xiaoye Qin, Feng Wang, Lina Xuan, Weimin Zhang\",\"doi\":\"10.1097/WNR.0000000000002067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to investigate how electroacupuncture regulates the learning and memory abilities of poststroke cognitive impairment (PSCI) rats through the TLR4/NF-κB/NLRP3 signaling pathway on the hippocampal microglia. Thirty male rats were randomly divided into three groups: sham surgery group, PSCI model group, and electroacupuncture group, with 10 rats in each group. Middle cerebral artery occlusion was used to establish the PSCI model. The Zea Longa method was used to score the rats' neurological function. Electroacupuncture was utilized for 21 days to improve PSCI. The learning and memory abilities of rats were tested using the Morris water maze. Hematoxylin-eosin staining and immunofluorescence were used to find the hippocampus' pathological changes. The concentration of interleukin-1β, interleukin-6, tumor necrosis factor-α, and interleukin-18 were detected by ELISA. The mRNA expression levels of associated inflammatory corpuscles were measured by quantitative real-time PCR. The protein expression levels of TLR4, MyD88, NF-κB, and NLRP3 were measured using western blotting. Electroacupuncture improved not only the learning and memory abilities of PSCI rats but also hippocampal morphology. Electroacupuncture inhibited the activation of microglia and the TLR4/NF-κB/NLRP3 signaling pathway. Electroacupuncture also reduced proinflammatory factors and restrained the mRNA levels of NLRP3-associated inflammatory cytokines. Its mechanism was related to inhibiting the expression of the TLR4/NF-κB/NLRP3 signaling pathway, attenuating the release of inflammatory factors, and regulating the activation of hippocampal microglia in the brain.</p>\",\"PeriodicalId\":19213,\"journal\":{\"name\":\"Neuroreport\",\"volume\":\" \",\"pages\":\"780-789\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11236269/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroreport\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/WNR.0000000000002067\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroreport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNR.0000000000002067","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Electroacupuncture improves the learning and memory abilities of rats with PSCI by attenuating the TLR4/NF-κB/NLRP3 signaling pathway on the hippocampal microglia.
This study aims to investigate how electroacupuncture regulates the learning and memory abilities of poststroke cognitive impairment (PSCI) rats through the TLR4/NF-κB/NLRP3 signaling pathway on the hippocampal microglia. Thirty male rats were randomly divided into three groups: sham surgery group, PSCI model group, and electroacupuncture group, with 10 rats in each group. Middle cerebral artery occlusion was used to establish the PSCI model. The Zea Longa method was used to score the rats' neurological function. Electroacupuncture was utilized for 21 days to improve PSCI. The learning and memory abilities of rats were tested using the Morris water maze. Hematoxylin-eosin staining and immunofluorescence were used to find the hippocampus' pathological changes. The concentration of interleukin-1β, interleukin-6, tumor necrosis factor-α, and interleukin-18 were detected by ELISA. The mRNA expression levels of associated inflammatory corpuscles were measured by quantitative real-time PCR. The protein expression levels of TLR4, MyD88, NF-κB, and NLRP3 were measured using western blotting. Electroacupuncture improved not only the learning and memory abilities of PSCI rats but also hippocampal morphology. Electroacupuncture inhibited the activation of microglia and the TLR4/NF-κB/NLRP3 signaling pathway. Electroacupuncture also reduced proinflammatory factors and restrained the mRNA levels of NLRP3-associated inflammatory cytokines. Its mechanism was related to inhibiting the expression of the TLR4/NF-κB/NLRP3 signaling pathway, attenuating the release of inflammatory factors, and regulating the activation of hippocampal microglia in the brain.
期刊介绍:
NeuroReport is a channel for rapid communication of new findings in neuroscience. It is a forum for the publication of short but complete reports of important studies that require very fast publication. Papers are accepted on the basis of the novelty of their finding, on their significance for neuroscience and on a clear need for rapid publication. Preliminary communications are not suitable for the Journal. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.
The core interest of the Journal is on studies that cast light on how the brain (and the whole of the nervous system) works.
We aim to give authors a decision on their submission within 2-5 weeks, and all accepted articles appear in the next issue to press.