肠杆菌和彗星菌之间的交叉保护和交叉取食促进了它们在大米中的共存和镉耐受性

IF 6.1 1区 生物学 Q1 MICROBIOLOGY
Xing Wang, Naijiang Guo, Yao Zhang, Gejiao Wang, Kaixiang Shi
{"title":"肠杆菌和彗星菌之间的交叉保护和交叉取食促进了它们在大米中的共存和镉耐受性","authors":"Xing Wang,&nbsp;Naijiang Guo,&nbsp;Yao Zhang,&nbsp;Gejiao Wang,&nbsp;Kaixiang Shi","doi":"10.1016/j.micres.2024.127806","DOIUrl":null,"url":null,"abstract":"<div><p>Metabolic cross-feeding is a pervasive interaction between bacteria to acquire novel phenotypes. However, our current understanding of the survival mechanism for cross-feeding in cocultured bacterial biofilms under heavy-metal conditions remains limited. Herein, we found that <em>Comamonas</em> sp. A23 produces L-phenylalanine to activate the L-phenylalanine degradation pathway in <em>Enterobacter</em> sp. A11, enhancing biofilm formation and cadmium [Cd(II)] immobilization in A11. The genes responsible for L-phenylalanine-degradation (<em>paaK</em>) and cell attachment and aggregation (<em>csgAD</em>) are essential for biofilm formation and Cd(II) immobilization in A11 induced by L-phenylalanine. The augmentation of A11 biofilms, in turn, protects A23 under Cd(II) and H<sub>2</sub>O<sub>2</sub> stresses. The plant-based experiments demonstrate that the induction of two rice Cd(II) transporters, <em>OsCOPT4</em> and <em>OsBCP1</em>, by A11 and A23 enhances rice resistance against Cd(II) and H<sub>2</sub>O<sub>2</sub> stresses. Overall, our findings unveil the mutual dependence between bacteria and rice on L-phenylalanine cross-feeding for survival under abiotic stress.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-protection and cross-feeding between Enterobacter and Comamonas promoting their coexistence and cadmium tolerance in Oryza sativa L.\",\"authors\":\"Xing Wang,&nbsp;Naijiang Guo,&nbsp;Yao Zhang,&nbsp;Gejiao Wang,&nbsp;Kaixiang Shi\",\"doi\":\"10.1016/j.micres.2024.127806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metabolic cross-feeding is a pervasive interaction between bacteria to acquire novel phenotypes. However, our current understanding of the survival mechanism for cross-feeding in cocultured bacterial biofilms under heavy-metal conditions remains limited. Herein, we found that <em>Comamonas</em> sp. A23 produces L-phenylalanine to activate the L-phenylalanine degradation pathway in <em>Enterobacter</em> sp. A11, enhancing biofilm formation and cadmium [Cd(II)] immobilization in A11. The genes responsible for L-phenylalanine-degradation (<em>paaK</em>) and cell attachment and aggregation (<em>csgAD</em>) are essential for biofilm formation and Cd(II) immobilization in A11 induced by L-phenylalanine. The augmentation of A11 biofilms, in turn, protects A23 under Cd(II) and H<sub>2</sub>O<sub>2</sub> stresses. The plant-based experiments demonstrate that the induction of two rice Cd(II) transporters, <em>OsCOPT4</em> and <em>OsBCP1</em>, by A11 and A23 enhances rice resistance against Cd(II) and H<sub>2</sub>O<sub>2</sub> stresses. Overall, our findings unveil the mutual dependence between bacteria and rice on L-phenylalanine cross-feeding for survival under abiotic stress.</p></div>\",\"PeriodicalId\":18564,\"journal\":{\"name\":\"Microbiological research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiological research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0944501324002076\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiological research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944501324002076","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

代谢交叉进食是细菌之间获得新表型的一种普遍相互作用。然而,我们目前对重金属条件下共培养细菌生物膜中交叉觅食的生存机制的了解仍然有限。在本文中,我们发现 Comamonas sp. A23 产生的 L-苯丙氨酸可激活肠杆菌 A11 的 L-苯丙氨酸降解途径,从而增强 A11 的生物膜形成和镉[Cd(II)]固定。负责L-苯丙氨酸降解(paaK)和细胞附着与聚集(csgAD)的基因是L-苯丙氨酸诱导A11形成生物膜和固定镉(II)的关键。A11 生物膜的增强反过来又保护了 Cd(II)和 H2O2 胁迫下的 A23。基于植物的实验证明,A11 和 A23 诱导的两个水稻镉(II)转运体 OsCOPT4 和 OsBCP1 增强了水稻对镉(II)和 H2O2 胁迫的抗性。总之,我们的研究结果揭示了细菌和水稻在非生物胁迫下生存对 L-苯丙氨酸交叉进食的相互依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-protection and cross-feeding between Enterobacter and Comamonas promoting their coexistence and cadmium tolerance in Oryza sativa L.

Metabolic cross-feeding is a pervasive interaction between bacteria to acquire novel phenotypes. However, our current understanding of the survival mechanism for cross-feeding in cocultured bacterial biofilms under heavy-metal conditions remains limited. Herein, we found that Comamonas sp. A23 produces L-phenylalanine to activate the L-phenylalanine degradation pathway in Enterobacter sp. A11, enhancing biofilm formation and cadmium [Cd(II)] immobilization in A11. The genes responsible for L-phenylalanine-degradation (paaK) and cell attachment and aggregation (csgAD) are essential for biofilm formation and Cd(II) immobilization in A11 induced by L-phenylalanine. The augmentation of A11 biofilms, in turn, protects A23 under Cd(II) and H2O2 stresses. The plant-based experiments demonstrate that the induction of two rice Cd(II) transporters, OsCOPT4 and OsBCP1, by A11 and A23 enhances rice resistance against Cd(II) and H2O2 stresses. Overall, our findings unveil the mutual dependence between bacteria and rice on L-phenylalanine cross-feeding for survival under abiotic stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiological research
Microbiological research 生物-微生物学
CiteScore
10.90
自引率
6.00%
发文量
249
审稿时长
29 days
期刊介绍: Microbiological Research is devoted to publishing reports on prokaryotic and eukaryotic microorganisms such as yeasts, fungi, bacteria, archaea, and protozoa. Research on interactions between pathogenic microorganisms and their environment or hosts are also covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信