Nagwa A. Meguid, Maha Hemimi, Mahmoud Rashad, Amal Elsaeid, Gina Elpatrik, Hala M. Zeidan
{"title":"自闭症儿童母亲母乳中 miR-146a 的失调。","authors":"Nagwa A. Meguid, Maha Hemimi, Mahmoud Rashad, Amal Elsaeid, Gina Elpatrik, Hala M. Zeidan","doi":"10.1002/jdn.10353","DOIUrl":null,"url":null,"abstract":"<p>Autism spectrum disorder (ASD) is a set of neurobehavioral manifestations that impose poor social interaction and stereotyped repetitive patterns. Several mircoRNA (miRNA) dysregulations underpin ASD pathophysiology via impairing the neurogenic niches. For instance, miR-146a and miR-106 differential expressions are linked to deregulation of ASD-related genes and the severity of clinical symptoms, respectively. Breastfeeding provides newborns with many bioactive compounds that support their neurodevelopment including miRNA. Our pilot study evaluated the expression pattern of miR-106a and miR-146a in human milk (HM) of nursing mothers (<i>n</i> = 36) having autistic children compared to age-matched counterparts (<i>n</i> = 36) with neurotypical children as controls. Under sterile conditions, breast milk samples were collected using manual sucking pumps and centrifuged to separate the fat layer. Total RNA was extracted from the lipid fraction, and the expression profiles of both miR-106a and miR-146a were evaluated using quantitative real-time polymerase chain reaction. Among the test group, we reported some factors that were previously linked to HM miRNA perturbations: gestational diabetes, hypertension, and cesarean delivery. HM miR-106a showed comparable expression levels in both mother groups (<i>p</i> = 0.8681), whereas HM miR-146a was significantly downregulated in mothers with autistic children compared to controls (<i>p</i> = 0.0399). Alternatively, HM miR-106 levels were positively associated with two ASD clinical parameters: Childhood Autism Rating Scale (CARS) and communication and language domain of Autism Diagnostic Interview-Revised (ADI-R) (<i>r</i> = 0.6452, <i>p</i> = 0.0003 and <i>r</i> = 0.3958, <i>p</i> = 0.0410, respectively). The receiver operating characteristic (ROC) curves of both maternal HM miR-106a and miR-146a showed poor fitness as predictive biomarkers for ASD. Our findings suggest that the miR-146a differential expression in ASD children may originate at infancy during the lactation period. Thus, maternal pre- and postnatal health care is critical to maintain optimal miRNome in breast milk.</p>","PeriodicalId":13914,"journal":{"name":"International Journal of Developmental Neuroscience","volume":"84 6","pages":"558-566"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dysregulation of miR-146a in human milk of mothers having children with autism\",\"authors\":\"Nagwa A. Meguid, Maha Hemimi, Mahmoud Rashad, Amal Elsaeid, Gina Elpatrik, Hala M. Zeidan\",\"doi\":\"10.1002/jdn.10353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Autism spectrum disorder (ASD) is a set of neurobehavioral manifestations that impose poor social interaction and stereotyped repetitive patterns. Several mircoRNA (miRNA) dysregulations underpin ASD pathophysiology via impairing the neurogenic niches. For instance, miR-146a and miR-106 differential expressions are linked to deregulation of ASD-related genes and the severity of clinical symptoms, respectively. Breastfeeding provides newborns with many bioactive compounds that support their neurodevelopment including miRNA. Our pilot study evaluated the expression pattern of miR-106a and miR-146a in human milk (HM) of nursing mothers (<i>n</i> = 36) having autistic children compared to age-matched counterparts (<i>n</i> = 36) with neurotypical children as controls. Under sterile conditions, breast milk samples were collected using manual sucking pumps and centrifuged to separate the fat layer. Total RNA was extracted from the lipid fraction, and the expression profiles of both miR-106a and miR-146a were evaluated using quantitative real-time polymerase chain reaction. Among the test group, we reported some factors that were previously linked to HM miRNA perturbations: gestational diabetes, hypertension, and cesarean delivery. HM miR-106a showed comparable expression levels in both mother groups (<i>p</i> = 0.8681), whereas HM miR-146a was significantly downregulated in mothers with autistic children compared to controls (<i>p</i> = 0.0399). Alternatively, HM miR-106 levels were positively associated with two ASD clinical parameters: Childhood Autism Rating Scale (CARS) and communication and language domain of Autism Diagnostic Interview-Revised (ADI-R) (<i>r</i> = 0.6452, <i>p</i> = 0.0003 and <i>r</i> = 0.3958, <i>p</i> = 0.0410, respectively). The receiver operating characteristic (ROC) curves of both maternal HM miR-106a and miR-146a showed poor fitness as predictive biomarkers for ASD. Our findings suggest that the miR-146a differential expression in ASD children may originate at infancy during the lactation period. Thus, maternal pre- and postnatal health care is critical to maintain optimal miRNome in breast milk.</p>\",\"PeriodicalId\":13914,\"journal\":{\"name\":\"International Journal of Developmental Neuroscience\",\"volume\":\"84 6\",\"pages\":\"558-566\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Developmental Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jdn.10353\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jdn.10353","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Dysregulation of miR-146a in human milk of mothers having children with autism
Autism spectrum disorder (ASD) is a set of neurobehavioral manifestations that impose poor social interaction and stereotyped repetitive patterns. Several mircoRNA (miRNA) dysregulations underpin ASD pathophysiology via impairing the neurogenic niches. For instance, miR-146a and miR-106 differential expressions are linked to deregulation of ASD-related genes and the severity of clinical symptoms, respectively. Breastfeeding provides newborns with many bioactive compounds that support their neurodevelopment including miRNA. Our pilot study evaluated the expression pattern of miR-106a and miR-146a in human milk (HM) of nursing mothers (n = 36) having autistic children compared to age-matched counterparts (n = 36) with neurotypical children as controls. Under sterile conditions, breast milk samples were collected using manual sucking pumps and centrifuged to separate the fat layer. Total RNA was extracted from the lipid fraction, and the expression profiles of both miR-106a and miR-146a were evaluated using quantitative real-time polymerase chain reaction. Among the test group, we reported some factors that were previously linked to HM miRNA perturbations: gestational diabetes, hypertension, and cesarean delivery. HM miR-106a showed comparable expression levels in both mother groups (p = 0.8681), whereas HM miR-146a was significantly downregulated in mothers with autistic children compared to controls (p = 0.0399). Alternatively, HM miR-106 levels were positively associated with two ASD clinical parameters: Childhood Autism Rating Scale (CARS) and communication and language domain of Autism Diagnostic Interview-Revised (ADI-R) (r = 0.6452, p = 0.0003 and r = 0.3958, p = 0.0410, respectively). The receiver operating characteristic (ROC) curves of both maternal HM miR-106a and miR-146a showed poor fitness as predictive biomarkers for ASD. Our findings suggest that the miR-146a differential expression in ASD children may originate at infancy during the lactation period. Thus, maternal pre- and postnatal health care is critical to maintain optimal miRNome in breast milk.
期刊介绍:
International Journal of Developmental Neuroscience publishes original research articles and critical review papers on all fundamental and clinical aspects of nervous system development, renewal and regeneration, as well as on the effects of genetic and environmental perturbations of brain development and homeostasis leading to neurodevelopmental disorders and neurological conditions. Studies describing the involvement of stem cells in nervous system maintenance and disease (including brain tumours), stem cell-based approaches for the investigation of neurodegenerative diseases, roles of neuroinflammation in development and disease, and neuroevolution are also encouraged. Investigations using molecular, cellular, physiological, genetic and epigenetic approaches in model systems ranging from simple invertebrates to human iPSC-based 2D and 3D models are encouraged, as are studies using experimental models that provide behavioural or evolutionary insights. The journal also publishes Special Issues dealing with topics at the cutting edge of research edited by Guest Editors appointed by the Editor in Chief. A major aim of the journal is to facilitate the transfer of fundamental studies of nervous system development, maintenance, and disease to clinical applications. The journal thus intends to disseminate valuable information for both biologists and physicians. International Journal of Developmental Neuroscience is owned and supported by The International Society for Developmental Neuroscience (ISDN), an organization of scientists interested in advancing developmental neuroscience research in the broadest sense.