Priscilla S. Redd , Alyssa D. Merting , John D. Klement , Dakota B. Poschel , Dafeng Yang , Kebin Liu
{"title":"通过人类 ACE2 受体阻断体外抗体介导的 SARS-CoV-2 感染抑制。","authors":"Priscilla S. Redd , Alyssa D. Merting , John D. Klement , Dakota B. Poschel , Dafeng Yang , Kebin Liu","doi":"10.1016/j.imlet.2024.106887","DOIUrl":null,"url":null,"abstract":"<div><p>Vaccines and antibodies that specifically target or neutralize components of the SARS-CoV-2 virus are effective in prevention and treatment of human patients with SARS-CoV-2 infection. However, vaccines and SARS-CoV-2 neutralization antibodies target a subset of epitopes of viral proteins, and the fast evolution of the SARS-CoV-2 virus and the continuing emergence of SARS-CoV-2 variants confer SARS-CoV-2 immune escape from these therapies. ACE2 is the human cell receptor that serves as the entry point for SARS-CoV-2 into human cells and thus is the gatekeeper for SARS-CoV-2 infection of humans. We report here the development of 4G8C11, an anti-human ACE2 receptor monoclonal antibody that recognizes ACE2 on human cell surfaces. We determined that 4G8C11 blocks SARS-CoV-2 and variant infection of ACE2<sup>+</sup> human cells. Furthermore, 4G8C11 has minimal effects on ACE2 receptor activity. 4G8C11 is therefore a monoclonal antibody for ACE2 receptor detection and potentially an effective immunotherapeutic agent for SARS-CoV-2 and variants.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro antibody-mediated SARS-CoV-2 infection suppression through human ACE2 receptor blockade\",\"authors\":\"Priscilla S. Redd , Alyssa D. Merting , John D. Klement , Dakota B. Poschel , Dafeng Yang , Kebin Liu\",\"doi\":\"10.1016/j.imlet.2024.106887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vaccines and antibodies that specifically target or neutralize components of the SARS-CoV-2 virus are effective in prevention and treatment of human patients with SARS-CoV-2 infection. However, vaccines and SARS-CoV-2 neutralization antibodies target a subset of epitopes of viral proteins, and the fast evolution of the SARS-CoV-2 virus and the continuing emergence of SARS-CoV-2 variants confer SARS-CoV-2 immune escape from these therapies. ACE2 is the human cell receptor that serves as the entry point for SARS-CoV-2 into human cells and thus is the gatekeeper for SARS-CoV-2 infection of humans. We report here the development of 4G8C11, an anti-human ACE2 receptor monoclonal antibody that recognizes ACE2 on human cell surfaces. We determined that 4G8C11 blocks SARS-CoV-2 and variant infection of ACE2<sup>+</sup> human cells. Furthermore, 4G8C11 has minimal effects on ACE2 receptor activity. 4G8C11 is therefore a monoclonal antibody for ACE2 receptor detection and potentially an effective immunotherapeutic agent for SARS-CoV-2 and variants.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165247824000610\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165247824000610","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
In vitro antibody-mediated SARS-CoV-2 infection suppression through human ACE2 receptor blockade
Vaccines and antibodies that specifically target or neutralize components of the SARS-CoV-2 virus are effective in prevention and treatment of human patients with SARS-CoV-2 infection. However, vaccines and SARS-CoV-2 neutralization antibodies target a subset of epitopes of viral proteins, and the fast evolution of the SARS-CoV-2 virus and the continuing emergence of SARS-CoV-2 variants confer SARS-CoV-2 immune escape from these therapies. ACE2 is the human cell receptor that serves as the entry point for SARS-CoV-2 into human cells and thus is the gatekeeper for SARS-CoV-2 infection of humans. We report here the development of 4G8C11, an anti-human ACE2 receptor monoclonal antibody that recognizes ACE2 on human cell surfaces. We determined that 4G8C11 blocks SARS-CoV-2 and variant infection of ACE2+ human cells. Furthermore, 4G8C11 has minimal effects on ACE2 receptor activity. 4G8C11 is therefore a monoclonal antibody for ACE2 receptor detection and potentially an effective immunotherapeutic agent for SARS-CoV-2 and variants.