基因调控中增强子-启动子和启动子-启动子连接的动态调控。

IF 3.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
BioEssays Pub Date : 2024-06-25 DOI:10.1002/bies.202400101
Shiho Makino, Takashi Fukaya
{"title":"基因调控中增强子-启动子和启动子-启动子连接的动态调控。","authors":"Shiho Makino,&nbsp;Takashi Fukaya","doi":"10.1002/bies.202400101","DOIUrl":null,"url":null,"abstract":"<p>Enhancers are short segments of regulatory DNA that control when and in which cell-type genes should be turned on in response to a variety of extrinsic and intrinsic signals. At the molecular level, enhancers serve as a genomic scaffold that recruits sequence-specific transcription factors and co-activators to facilitate transcription from linked promoters. However, it remains largely unclear how enhancers communicate with appropriate target promoters in the context of higher-order genome topology. In this review, we discuss recent progress in our understanding of the functional interplay between enhancers, genome topology, and the molecular properties of transcription machineries in gene regulation. We suggest that the activities of transcription hubs are highly regulated through the dynamic rearrangement of enhancer-promoter and promoter-promoter connectivity during animal development.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202400101","citationCount":"0","resultStr":"{\"title\":\"Dynamic modulation of enhancer-promoter and promoter-promoter connectivity in gene regulation\",\"authors\":\"Shiho Makino,&nbsp;Takashi Fukaya\",\"doi\":\"10.1002/bies.202400101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Enhancers are short segments of regulatory DNA that control when and in which cell-type genes should be turned on in response to a variety of extrinsic and intrinsic signals. At the molecular level, enhancers serve as a genomic scaffold that recruits sequence-specific transcription factors and co-activators to facilitate transcription from linked promoters. However, it remains largely unclear how enhancers communicate with appropriate target promoters in the context of higher-order genome topology. In this review, we discuss recent progress in our understanding of the functional interplay between enhancers, genome topology, and the molecular properties of transcription machineries in gene regulation. We suggest that the activities of transcription hubs are highly regulated through the dynamic rearrangement of enhancer-promoter and promoter-promoter connectivity during animal development.</p>\",\"PeriodicalId\":9264,\"journal\":{\"name\":\"BioEssays\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202400101\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioEssays\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bies.202400101\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEssays","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bies.202400101","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

增强子是调控 DNA 的短片段,可控制细胞类型基因何时以及在何种情况下开启,以响应各种外在和内在信号。在分子水平上,增强子是一种基因组支架,可招募序列特异的转录因子和共激活因子,以促进连接启动子的转录。然而,增强子如何在更高阶的基因组拓扑背景下与适当的目标启动子进行交流在很大程度上仍不清楚。在这篇综述中,我们将讨论在理解增强子、基因组拓扑和基因调控中转录机制的分子特性之间的功能性相互作用方面的最新进展。我们认为,在动物发育过程中,通过增强子-启动子和启动子-启动子连接的动态重排,转录中枢的活动受到了高度调控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamic modulation of enhancer-promoter and promoter-promoter connectivity in gene regulation

Dynamic modulation of enhancer-promoter and promoter-promoter connectivity in gene regulation

Dynamic modulation of enhancer-promoter and promoter-promoter connectivity in gene regulation

Enhancers are short segments of regulatory DNA that control when and in which cell-type genes should be turned on in response to a variety of extrinsic and intrinsic signals. At the molecular level, enhancers serve as a genomic scaffold that recruits sequence-specific transcription factors and co-activators to facilitate transcription from linked promoters. However, it remains largely unclear how enhancers communicate with appropriate target promoters in the context of higher-order genome topology. In this review, we discuss recent progress in our understanding of the functional interplay between enhancers, genome topology, and the molecular properties of transcription machineries in gene regulation. We suggest that the activities of transcription hubs are highly regulated through the dynamic rearrangement of enhancer-promoter and promoter-promoter connectivity during animal development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioEssays
BioEssays 生物-生化与分子生物学
CiteScore
7.30
自引率
2.50%
发文量
167
审稿时长
4-8 weeks
期刊介绍: molecular – cellular – biomedical – physiology – translational research – systems - hypotheses encouraged BioEssays is a peer-reviewed, review-and-discussion journal. Our aims are to publish novel insights, forward-looking reviews and commentaries in contemporary biology with a molecular, genetic, cellular, or physiological dimension, and serve as a discussion forum for new ideas in these areas. An additional goal is to encourage transdisciplinarity and integrative biology in the context of organismal studies, systems approaches, through to ecosystems, where appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信