研究淡水生态系统中人为压力因素之间的相互作用:对 2396 项多重压力实验的系统回顾。

IF 7.6 1区 环境科学与生态学 Q1 ECOLOGY
Ecology Letters Pub Date : 2024-06-25 DOI:10.1111/ele.14463
James A. Orr, Samuel J. Macaulay, Adriana Mordente, Benjamin Burgess, Dania Albini, Julia G. Hunn, Katherin Restrepo-Sulez, Ramesh Wilson, Anne Schechner, Aoife M. Robertson, Bethany Lee, Blake R. Stuparyk, Delezia Singh, Isobel O'Loughlin, Jeremy J. Piggott, Jiangqiu Zhu, Khuong V. Dinh, Louise C. Archer, Marcin Penk, Minh Thi Thuy Vu, Noël P. D. Juvigny-Khenafou, Peiyu Zhang, Philip Sanders, Ralf B. Schäfer, Rolf D. Vinebrooke, Sabine Hilt, Thomas Reed, Michelle C. Jackson
{"title":"研究淡水生态系统中人为压力因素之间的相互作用:对 2396 项多重压力实验的系统回顾。","authors":"James A. Orr,&nbsp;Samuel J. Macaulay,&nbsp;Adriana Mordente,&nbsp;Benjamin Burgess,&nbsp;Dania Albini,&nbsp;Julia G. Hunn,&nbsp;Katherin Restrepo-Sulez,&nbsp;Ramesh Wilson,&nbsp;Anne Schechner,&nbsp;Aoife M. Robertson,&nbsp;Bethany Lee,&nbsp;Blake R. Stuparyk,&nbsp;Delezia Singh,&nbsp;Isobel O'Loughlin,&nbsp;Jeremy J. Piggott,&nbsp;Jiangqiu Zhu,&nbsp;Khuong V. Dinh,&nbsp;Louise C. Archer,&nbsp;Marcin Penk,&nbsp;Minh Thi Thuy Vu,&nbsp;Noël P. D. Juvigny-Khenafou,&nbsp;Peiyu Zhang,&nbsp;Philip Sanders,&nbsp;Ralf B. Schäfer,&nbsp;Rolf D. Vinebrooke,&nbsp;Sabine Hilt,&nbsp;Thomas Reed,&nbsp;Michelle C. Jackson","doi":"10.1111/ele.14463","DOIUrl":null,"url":null,"abstract":"<p>Understanding the interactions among anthropogenic stressors is critical for effective conservation and management of ecosystems. Freshwater scientists have invested considerable resources in conducting factorial experiments to disentangle stressor interactions by testing their individual and combined effects. However, the diversity of stressors and systems studied has hindered previous syntheses of this body of research. To overcome this challenge, we used a novel machine learning framework to identify relevant studies from over 235,000 publications. Our synthesis resulted in a new dataset of 2396 multiple-stressor experiments in freshwater systems. By summarizing the methods used in these studies, quantifying trends in the popularity of the investigated stressors, and performing co-occurrence analysis, we produce the most comprehensive overview of this diverse field of research to date. We provide both a taxonomy grouping the 909 investigated stressors into 31 classes and an open-source and interactive version of the dataset (https://jamesaorr.shinyapps.io/freshwater-multiple-stressors/). Inspired by our results, we provide a framework to help clarify whether statistical interactions detected by factorial experiments align with stressor interactions of interest, and we outline general guidelines for the design of multiple-stressor experiments relevant to any system. We conclude by highlighting the research directions required to better understand freshwater ecosystems facing multiple stressors.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 6","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14463","citationCount":"0","resultStr":"{\"title\":\"Studying interactions among anthropogenic stressors in freshwater ecosystems: A systematic review of 2396 multiple-stressor experiments\",\"authors\":\"James A. Orr,&nbsp;Samuel J. Macaulay,&nbsp;Adriana Mordente,&nbsp;Benjamin Burgess,&nbsp;Dania Albini,&nbsp;Julia G. Hunn,&nbsp;Katherin Restrepo-Sulez,&nbsp;Ramesh Wilson,&nbsp;Anne Schechner,&nbsp;Aoife M. Robertson,&nbsp;Bethany Lee,&nbsp;Blake R. Stuparyk,&nbsp;Delezia Singh,&nbsp;Isobel O'Loughlin,&nbsp;Jeremy J. Piggott,&nbsp;Jiangqiu Zhu,&nbsp;Khuong V. Dinh,&nbsp;Louise C. Archer,&nbsp;Marcin Penk,&nbsp;Minh Thi Thuy Vu,&nbsp;Noël P. D. Juvigny-Khenafou,&nbsp;Peiyu Zhang,&nbsp;Philip Sanders,&nbsp;Ralf B. Schäfer,&nbsp;Rolf D. Vinebrooke,&nbsp;Sabine Hilt,&nbsp;Thomas Reed,&nbsp;Michelle C. Jackson\",\"doi\":\"10.1111/ele.14463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding the interactions among anthropogenic stressors is critical for effective conservation and management of ecosystems. Freshwater scientists have invested considerable resources in conducting factorial experiments to disentangle stressor interactions by testing their individual and combined effects. However, the diversity of stressors and systems studied has hindered previous syntheses of this body of research. To overcome this challenge, we used a novel machine learning framework to identify relevant studies from over 235,000 publications. Our synthesis resulted in a new dataset of 2396 multiple-stressor experiments in freshwater systems. By summarizing the methods used in these studies, quantifying trends in the popularity of the investigated stressors, and performing co-occurrence analysis, we produce the most comprehensive overview of this diverse field of research to date. We provide both a taxonomy grouping the 909 investigated stressors into 31 classes and an open-source and interactive version of the dataset (https://jamesaorr.shinyapps.io/freshwater-multiple-stressors/). Inspired by our results, we provide a framework to help clarify whether statistical interactions detected by factorial experiments align with stressor interactions of interest, and we outline general guidelines for the design of multiple-stressor experiments relevant to any system. We conclude by highlighting the research directions required to better understand freshwater ecosystems facing multiple stressors.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"27 6\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14463\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.14463\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14463","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解人为压力源之间的相互作用对于有效保护和管理生态系统至关重要。淡水科学家投入了大量资源进行因子实验,通过测试压力源的个体效应和综合效应来厘清压力源之间的相互作用。然而,所研究的压力源和系统的多样性阻碍了以往对这些研究成果的综合分析。为了克服这一难题,我们使用了一种新颖的机器学习框架,从 235,000 多篇论文中识别出相关研究。我们的综合工作产生了一个包含 2396 项淡水系统多重胁迫实验的新数据集。通过总结这些研究中使用的方法、量化所研究压力因素的流行趋势以及进行共现分析,我们对这一多样化的研究领域进行了迄今为止最全面的概述。我们提供了将 909 种调查过的压力源分为 31 类的分类法,以及数据集的开源互动版本 (https://jamesaorr.shinyapps.io/freshwater-multiple-stressors/)。受我们研究结果的启发,我们提供了一个框架,以帮助澄清因子实验检测到的统计交互作用是否与感兴趣的应激源交互作用一致,我们还概述了与任何系统相关的多应激源实验设计的一般指导原则。最后,我们强调了更好地理解面临多重压力的淡水生态系统所需的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Studying interactions among anthropogenic stressors in freshwater ecosystems: A systematic review of 2396 multiple-stressor experiments

Understanding the interactions among anthropogenic stressors is critical for effective conservation and management of ecosystems. Freshwater scientists have invested considerable resources in conducting factorial experiments to disentangle stressor interactions by testing their individual and combined effects. However, the diversity of stressors and systems studied has hindered previous syntheses of this body of research. To overcome this challenge, we used a novel machine learning framework to identify relevant studies from over 235,000 publications. Our synthesis resulted in a new dataset of 2396 multiple-stressor experiments in freshwater systems. By summarizing the methods used in these studies, quantifying trends in the popularity of the investigated stressors, and performing co-occurrence analysis, we produce the most comprehensive overview of this diverse field of research to date. We provide both a taxonomy grouping the 909 investigated stressors into 31 classes and an open-source and interactive version of the dataset (https://jamesaorr.shinyapps.io/freshwater-multiple-stressors/). Inspired by our results, we provide a framework to help clarify whether statistical interactions detected by factorial experiments align with stressor interactions of interest, and we outline general guidelines for the design of multiple-stressor experiments relevant to any system. We conclude by highlighting the research directions required to better understand freshwater ecosystems facing multiple stressors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecology Letters
Ecology Letters 环境科学-生态学
CiteScore
17.60
自引率
3.40%
发文量
201
审稿时长
1.8 months
期刊介绍: Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信