坚固耐用的全织物电子皮肤,耐高温、耐腐蚀,可实现自供电触觉传感

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jin Tao , Weitao Zhao , Xinran Zhou , Jiwei Zhang , Yufan Zhang , Minghui Fan , Mengjie Wu , Luyun Liu , Zijie Zhou , Hong Zhu , Jiaqing Xiong
{"title":"坚固耐用的全织物电子皮肤,耐高温、耐腐蚀,可实现自供电触觉传感","authors":"Jin Tao ,&nbsp;Weitao Zhao ,&nbsp;Xinran Zhou ,&nbsp;Jiwei Zhang ,&nbsp;Yufan Zhang ,&nbsp;Minghui Fan ,&nbsp;Mengjie Wu ,&nbsp;Luyun Liu ,&nbsp;Zijie Zhou ,&nbsp;Hong Zhu ,&nbsp;Jiaqing Xiong","doi":"10.1016/j.nanoen.2024.109930","DOIUrl":null,"url":null,"abstract":"<div><p>Electronic skins (e-skins) for monitoring human and robot activities under extreme circumstances are significant for human-machine interaction in multiple scenarios, which is challenging to realize on fabric/textile materials. Herein, a core filling-encapsulation strategy for multi-layer weaving is explored to achieve a triboelectric triple-layer sandwich woven e-skin (TSW e-skin) for durable self-powered sensing in extreme environments. To construct a robust structure with environment adaptability, ultra-high molecular weight polyethylene (UPE) fibers or polyimide (PI) fibers are integrated into the triple-layer sandwich woven to provide mechanical/thermal/chemical stability, and carbon fibers (CF) are protectively embedded as a core layer for electricity collection, heat management and adaptive sensing. Hydrophobic encapsulation is improved by polydimethylsiloxane (PDMS) thin coating with morphology and mechanical compliances. The TSW e-skin demonstrates excellent mechanical strength (∼20 MPa) and thermal stability (154.5 ℃), durable superhydrophobicity (&gt;150°), and corrosion resistance (pH 1–13), which demonstrates an open-circuit voltage of 53 V and maintains electrically stable at above 150 ℃. The weaving structure enables the e-skin regulatable electrode patterns for sensitive motion perception and touch identification for human and robotic limbs, with real-time tactile feedback even under extreme scenarios. This robust all-fabric e-skin proposes a common strategy for human-robot perception in harsh environments.</p></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust all-fabric e-skin with high-temperature and corrosion tolerance for self-powered tactile sensing\",\"authors\":\"Jin Tao ,&nbsp;Weitao Zhao ,&nbsp;Xinran Zhou ,&nbsp;Jiwei Zhang ,&nbsp;Yufan Zhang ,&nbsp;Minghui Fan ,&nbsp;Mengjie Wu ,&nbsp;Luyun Liu ,&nbsp;Zijie Zhou ,&nbsp;Hong Zhu ,&nbsp;Jiaqing Xiong\",\"doi\":\"10.1016/j.nanoen.2024.109930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electronic skins (e-skins) for monitoring human and robot activities under extreme circumstances are significant for human-machine interaction in multiple scenarios, which is challenging to realize on fabric/textile materials. Herein, a core filling-encapsulation strategy for multi-layer weaving is explored to achieve a triboelectric triple-layer sandwich woven e-skin (TSW e-skin) for durable self-powered sensing in extreme environments. To construct a robust structure with environment adaptability, ultra-high molecular weight polyethylene (UPE) fibers or polyimide (PI) fibers are integrated into the triple-layer sandwich woven to provide mechanical/thermal/chemical stability, and carbon fibers (CF) are protectively embedded as a core layer for electricity collection, heat management and adaptive sensing. Hydrophobic encapsulation is improved by polydimethylsiloxane (PDMS) thin coating with morphology and mechanical compliances. The TSW e-skin demonstrates excellent mechanical strength (∼20 MPa) and thermal stability (154.5 ℃), durable superhydrophobicity (&gt;150°), and corrosion resistance (pH 1–13), which demonstrates an open-circuit voltage of 53 V and maintains electrically stable at above 150 ℃. The weaving structure enables the e-skin regulatable electrode patterns for sensitive motion perception and touch identification for human and robotic limbs, with real-time tactile feedback even under extreme scenarios. This robust all-fabric e-skin proposes a common strategy for human-robot perception in harsh environments.</p></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285524006785\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524006785","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

用于监测极端环境下人类和机器人活动的电子皮肤(e-skin)对多种场景下的人机交互具有重要意义,而在织物/纺织材料上实现这一功能具有挑战性。本文探索了一种多层编织的核心填充封装策略,以实现三电三层夹层编织电子皮肤(TSW e-skin),从而在极端环境中实现持久的自供电传感。为了构建具有环境适应性的坚固结构,超高分子量聚乙烯(UPE)纤维或聚酰亚胺(PI)纤维被集成到三层夹层编织物中,以提供机械/热/化学稳定性,碳纤维(CF)被保护性地嵌入作为芯层,以实现电力收集、热量管理和自适应传感。聚二甲基硅氧烷(PDMS)薄涂层改善了疏水封装的形态和机械顺应性。TSW 电子皮肤具有出色的机械强度(20 兆帕)和热稳定性(154.5 ℃)、持久的超疏水性能(>150°)和耐腐蚀性(pH 1-13),其开路电压为 53 V,并能在 150 ℃ 以上保持电气稳定。这种编织结构使电子皮肤能够调节电极模式,为人体和机器人肢体提供灵敏的运动感知和触觉识别,即使在极端情况下也能获得实时触觉反馈。这种坚固耐用的全织物电子皮肤为恶劣环境下的人机感知提出了一种通用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Robust all-fabric e-skin with high-temperature and corrosion tolerance for self-powered tactile sensing

Robust all-fabric e-skin with high-temperature and corrosion tolerance for self-powered tactile sensing

Electronic skins (e-skins) for monitoring human and robot activities under extreme circumstances are significant for human-machine interaction in multiple scenarios, which is challenging to realize on fabric/textile materials. Herein, a core filling-encapsulation strategy for multi-layer weaving is explored to achieve a triboelectric triple-layer sandwich woven e-skin (TSW e-skin) for durable self-powered sensing in extreme environments. To construct a robust structure with environment adaptability, ultra-high molecular weight polyethylene (UPE) fibers or polyimide (PI) fibers are integrated into the triple-layer sandwich woven to provide mechanical/thermal/chemical stability, and carbon fibers (CF) are protectively embedded as a core layer for electricity collection, heat management and adaptive sensing. Hydrophobic encapsulation is improved by polydimethylsiloxane (PDMS) thin coating with morphology and mechanical compliances. The TSW e-skin demonstrates excellent mechanical strength (∼20 MPa) and thermal stability (154.5 ℃), durable superhydrophobicity (>150°), and corrosion resistance (pH 1–13), which demonstrates an open-circuit voltage of 53 V and maintains electrically stable at above 150 ℃. The weaving structure enables the e-skin regulatable electrode patterns for sensitive motion perception and touch identification for human and robotic limbs, with real-time tactile feedback even under extreme scenarios. This robust all-fabric e-skin proposes a common strategy for human-robot perception in harsh environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信