识别 RNA 结构及其在 RNA 功能中的作用

IF 81.3 1区 生物学 Q1 CELL BIOLOGY
Xinang Cao, Yueying Zhang, Yiliang Ding, Yue Wan
{"title":"识别 RNA 结构及其在 RNA 功能中的作用","authors":"Xinang Cao, Yueying Zhang, Yiliang Ding, Yue Wan","doi":"10.1038/s41580-024-00748-6","DOIUrl":null,"url":null,"abstract":"The development of high-throughput RNA structure profiling methods in the past decade has greatly facilitated our ability to map and characterize different aspects of RNA structures transcriptome-wide in cell populations, single cells and single molecules. The resulting high-resolution data have provided insights into the static and dynamic nature of RNA structures, revealing their complexity as they perform their respective functions in the cell. In this Review, we discuss recent technical advances in the determination of RNA structures, and the roles of RNA structures in RNA biogenesis and functions, including in transcription, processing, translation, degradation, localization and RNA structure-dependent condensates. We also discuss the current understanding of how RNA structures could guide drug design for treating genetic diseases and battling pathogenic viruses, and highlight existing challenges and future directions in RNA structure research. Recently developed RNA structure profiling methods are transforming our understanding of static and dynamic facets of RNA structures at single-cell and single-molecule resolution. These data have revealed new roles for structures in RNA biogenesis and function, and guide drug design against viral RNAs and for treatment of genetic diseases.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":null,"pages":null},"PeriodicalIF":81.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of RNA structures and their roles in RNA functions\",\"authors\":\"Xinang Cao, Yueying Zhang, Yiliang Ding, Yue Wan\",\"doi\":\"10.1038/s41580-024-00748-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of high-throughput RNA structure profiling methods in the past decade has greatly facilitated our ability to map and characterize different aspects of RNA structures transcriptome-wide in cell populations, single cells and single molecules. The resulting high-resolution data have provided insights into the static and dynamic nature of RNA structures, revealing their complexity as they perform their respective functions in the cell. In this Review, we discuss recent technical advances in the determination of RNA structures, and the roles of RNA structures in RNA biogenesis and functions, including in transcription, processing, translation, degradation, localization and RNA structure-dependent condensates. We also discuss the current understanding of how RNA structures could guide drug design for treating genetic diseases and battling pathogenic viruses, and highlight existing challenges and future directions in RNA structure research. Recently developed RNA structure profiling methods are transforming our understanding of static and dynamic facets of RNA structures at single-cell and single-molecule resolution. These data have revealed new roles for structures in RNA biogenesis and function, and guide drug design against viral RNAs and for treatment of genetic diseases.\",\"PeriodicalId\":19051,\"journal\":{\"name\":\"Nature Reviews Molecular Cell Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":81.3000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Molecular Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41580-024-00748-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41580-024-00748-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

过去十年来,高通量 RNA 结构分析方法的发展极大地促进了我们绘制和描述整个细胞群、单细胞和单分子转录组 RNA 结构不同方面的能力。由此产生的高分辨率数据让我们深入了解了 RNA 结构的静态和动态性质,揭示了它们在细胞中发挥各自功能时的复杂性。在本综述中,我们将讨论在确定 RNA 结构方面的最新技术进展,以及 RNA 结构在 RNA 生物发生和功能中的作用,包括在转录、加工、翻译、降解、定位和 RNA 结构依赖性凝聚物中的作用。我们还讨论了目前对 RNA 结构如何指导治疗遗传疾病和对抗致病病毒的药物设计的理解,并重点介绍了 RNA 结构研究的现有挑战和未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Identification of RNA structures and their roles in RNA functions

Identification of RNA structures and their roles in RNA functions

Identification of RNA structures and their roles in RNA functions
The development of high-throughput RNA structure profiling methods in the past decade has greatly facilitated our ability to map and characterize different aspects of RNA structures transcriptome-wide in cell populations, single cells and single molecules. The resulting high-resolution data have provided insights into the static and dynamic nature of RNA structures, revealing their complexity as they perform their respective functions in the cell. In this Review, we discuss recent technical advances in the determination of RNA structures, and the roles of RNA structures in RNA biogenesis and functions, including in transcription, processing, translation, degradation, localization and RNA structure-dependent condensates. We also discuss the current understanding of how RNA structures could guide drug design for treating genetic diseases and battling pathogenic viruses, and highlight existing challenges and future directions in RNA structure research. Recently developed RNA structure profiling methods are transforming our understanding of static and dynamic facets of RNA structures at single-cell and single-molecule resolution. These data have revealed new roles for structures in RNA biogenesis and function, and guide drug design against viral RNAs and for treatment of genetic diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Reviews Molecular Cell Biology
Nature Reviews Molecular Cell Biology 生物-细胞生物学
CiteScore
173.60
自引率
0.50%
发文量
118
审稿时长
6-12 weeks
期刊介绍: Nature Reviews Molecular Cell Biology is a prestigious journal that aims to be the primary source of reviews and commentaries for the scientific communities it serves. The journal strives to publish articles that are authoritative, accessible, and enriched with easily understandable figures, tables, and other display items. The goal is to provide an unparalleled service to authors, referees, and readers, and the journal works diligently to maximize the usefulness and impact of each article. Nature Reviews Molecular Cell Biology publishes a variety of article types, including Reviews, Perspectives, Comments, and Research Highlights, all of which are relevant to molecular and cell biologists. The journal's broad scope ensures that the articles it publishes reach the widest possible audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信