揭示 PM10 氧化潜能源分配的最佳回归模型

IF 5.2 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Vy Dinh Ngoc Thuy, Jean-Luc Jaffrezo, Ian Hough, Pamela A. Dominutti, Guillaume Salque Moreton, Grégory Gille, Florie Francony, Arabelle Patron-Anquez, Olivier Favez, Gaëlle Uzu
{"title":"揭示 PM10 氧化潜能源分配的最佳回归模型","authors":"Vy Dinh Ngoc Thuy, Jean-Luc Jaffrezo, Ian Hough, Pamela A. Dominutti, Guillaume Salque Moreton, Grégory Gille, Florie Francony, Arabelle Patron-Anquez, Olivier Favez, Gaëlle Uzu","doi":"10.5194/acp-24-7261-2024","DOIUrl":null,"url":null,"abstract":"Abstract. The capacity of particulate matter (PM) to generate reactive oxygen species (ROS) in vivo leading to oxidative stress is thought to be a main pathway in the health effects of PM inhalation. Exogenous ROS from PM can be assessed by acellular oxidative potential (OP) measurements as a proxy of the induction of oxidative stress in the lungs. Here, we investigate the importance of OP apportionment methods for OP distribution by PM10 sources in different types of environments. PM10 sources derived from receptor models (e.g., EPA positive matrix factorization (EPA PMF)) are coupled with regression models expressing the associations between PM10 sources and PM10 OP measured by ascorbic acid (OPAA) and dithiothreitol assay (OPDTT). These relationships are compared for eight regression techniques: ordinary least squares, weighted least squares, positive least squares, Ridge, Lasso, generalized linear model, random forest, and multilayer perceptron. The models are evaluated on 1 year of PM10 samples and chemical analyses at each of six sites of different typologies in France to assess the possible impact of PM source variability on PM10 OP apportionment. PM10 source-specific OPDTT and OPAA and out-of-sample apportionment accuracy vary substantially by model, highlighting the importance of model selection according to the datasets. Recommendations for the selection of the most accurate model are provided, encompassing considerations such as multicollinearity and homoscedasticity.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"43 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the optimal regression model for source apportionment of the oxidative potential of PM10\",\"authors\":\"Vy Dinh Ngoc Thuy, Jean-Luc Jaffrezo, Ian Hough, Pamela A. Dominutti, Guillaume Salque Moreton, Grégory Gille, Florie Francony, Arabelle Patron-Anquez, Olivier Favez, Gaëlle Uzu\",\"doi\":\"10.5194/acp-24-7261-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The capacity of particulate matter (PM) to generate reactive oxygen species (ROS) in vivo leading to oxidative stress is thought to be a main pathway in the health effects of PM inhalation. Exogenous ROS from PM can be assessed by acellular oxidative potential (OP) measurements as a proxy of the induction of oxidative stress in the lungs. Here, we investigate the importance of OP apportionment methods for OP distribution by PM10 sources in different types of environments. PM10 sources derived from receptor models (e.g., EPA positive matrix factorization (EPA PMF)) are coupled with regression models expressing the associations between PM10 sources and PM10 OP measured by ascorbic acid (OPAA) and dithiothreitol assay (OPDTT). These relationships are compared for eight regression techniques: ordinary least squares, weighted least squares, positive least squares, Ridge, Lasso, generalized linear model, random forest, and multilayer perceptron. The models are evaluated on 1 year of PM10 samples and chemical analyses at each of six sites of different typologies in France to assess the possible impact of PM source variability on PM10 OP apportionment. PM10 source-specific OPDTT and OPAA and out-of-sample apportionment accuracy vary substantially by model, highlighting the importance of model selection according to the datasets. Recommendations for the selection of the most accurate model are provided, encompassing considerations such as multicollinearity and homoscedasticity.\",\"PeriodicalId\":8611,\"journal\":{\"name\":\"Atmospheric Chemistry and Physics\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Chemistry and Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/acp-24-7261-2024\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/acp-24-7261-2024","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要颗粒物(PM)在体内产生活性氧(ROS)导致氧化应激的能力被认为是吸入颗粒物影响健康的主要途径。可吸入颗粒物产生的外源性 ROS 可通过细胞氧化电位(OP)测量来评估,以此作为肺部氧化应激诱导的替代物。在这里,我们研究了不同类型环境中 PM10 来源的 OP 分布的 OP 分摊方法的重要性。从受体模型(如 EPA 正矩阵因式分解(EPA PMF))得出的 PM10 来源与表达 PM10 来源与通过抗坏血酸(OPAA)和二硫苏糖醇测定法(OPDTT)测量的 PM10 OP 之间关系的回归模型相结合。这些关系通过八种回归技术进行了比较:普通最小二乘法、加权最小二乘法、正最小二乘法、Ridge、Lasso、广义线性模型、随机森林和多层感知器。这些模型对法国六个不同类型地点的一年 PM10 样品和化学分析进行了评估,以评估 PM10 源变异性对 PM10 OP 分配可能产生的影响。不同模型的PM10特定源OPDTT和OPAA以及样本外分摊的准确性差异很大,这突出了根据数据集选择模型的重要性。提供了选择最准确模型的建议,包括多共线性和同方差等考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling the optimal regression model for source apportionment of the oxidative potential of PM10
Abstract. The capacity of particulate matter (PM) to generate reactive oxygen species (ROS) in vivo leading to oxidative stress is thought to be a main pathway in the health effects of PM inhalation. Exogenous ROS from PM can be assessed by acellular oxidative potential (OP) measurements as a proxy of the induction of oxidative stress in the lungs. Here, we investigate the importance of OP apportionment methods for OP distribution by PM10 sources in different types of environments. PM10 sources derived from receptor models (e.g., EPA positive matrix factorization (EPA PMF)) are coupled with regression models expressing the associations between PM10 sources and PM10 OP measured by ascorbic acid (OPAA) and dithiothreitol assay (OPDTT). These relationships are compared for eight regression techniques: ordinary least squares, weighted least squares, positive least squares, Ridge, Lasso, generalized linear model, random forest, and multilayer perceptron. The models are evaluated on 1 year of PM10 samples and chemical analyses at each of six sites of different typologies in France to assess the possible impact of PM source variability on PM10 OP apportionment. PM10 source-specific OPDTT and OPAA and out-of-sample apportionment accuracy vary substantially by model, highlighting the importance of model selection according to the datasets. Recommendations for the selection of the most accurate model are provided, encompassing considerations such as multicollinearity and homoscedasticity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Chemistry and Physics
Atmospheric Chemistry and Physics 地学-气象与大气科学
CiteScore
10.70
自引率
20.60%
发文量
702
审稿时长
6 months
期刊介绍: Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere. The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信