由氮形态介导的叶绿体中层传导率的变化与细胞壁性质和叶绿体数量的变化有关。

IF 7.6 Q1 GENETICS & HEREDITY
园艺研究(英文) Pub Date : 2024-02-22 eCollection Date: 2024-06-01 DOI:10.1093/hr/uhae112
Yiwen Cao, Yonghui Pan, Yating Yang, Tianheng Liu, Min Wang, Yong Li, Shiwei Guo
{"title":"由氮形态介导的叶绿体中层传导率的变化与细胞壁性质和叶绿体数量的变化有关。","authors":"Yiwen Cao, Yonghui Pan, Yating Yang, Tianheng Liu, Min Wang, Yong Li, Shiwei Guo","doi":"10.1093/hr/uhae112","DOIUrl":null,"url":null,"abstract":"<p><p>Plants primarily incorporate nitrate (NO<sub>3</sub> <sup>-</sup>) and ammonium (NH<sub>4</sub> <sup>+</sup>) as the primary source of inorganic nitrogen (N); the physiological mechanisms of photosynthesis (<i>A</i>) dropdown under NH<sub>4</sub> <sup>+</sup> nutrition has been investigated in many studies. Leaf anatomy is a major determinant to mesophyll conductance (<i>g</i> <sub>m</sub>) and photosynthesis; however, it remains unclear whether the photosynthesis variations of plants exposed to different N forms is related to leaf anatomical variation. In this work, a common shrub, <i>Lonicera japonica</i> was hydroponically grown under NH<sub>4</sub> <sup>+</sup>, NO<sub>3</sub> <sup>-</sup> and 50% NH<sub>4</sub> <sup>+</sup>/NO<sub>3</sub> <sup>-</sup>. We found that leaf N significantly accumulated under NH<sub>4</sub> <sup>+</sup>, whereas the photosynthesis was significantly decreased, which was mainly caused by a reduced <i>g</i> <sub>m</sub>. The reduced <i>g</i> <sub>m</sub> under NH<sub>4</sub> <sup>+</sup> was related to the decreased intercellular air space, the reduced chloroplast number and especially the thicker cell walls. Among the cell wall components, lignin and hemicellulose contents under NH<sub>4</sub> <sup>+</sup> nutrition were significantly higher than those in the other two N forms and were scaled negatively correlated with <i>g</i> <sub>m</sub>; while pectin content was independent from N forms. Pathway analysis further revealed that the cell wall components might indirectly regulate <i>g</i> <sub>m</sub> by influencing the thickness of the cell wall. These results highlight the importance of leaf anatomical variation characterized by modifications of chloroplasts number and cell wall thickness and compositions, in the regulation of photosynthesis in response to varied N sources.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 6","pages":"uhae112"},"PeriodicalIF":7.6000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197310/pdf/","citationCount":"0","resultStr":"{\"title\":\"Variation of mesophyll conductance mediated by nitrogen form is related to changes in cell wall property and chloroplast number.\",\"authors\":\"Yiwen Cao, Yonghui Pan, Yating Yang, Tianheng Liu, Min Wang, Yong Li, Shiwei Guo\",\"doi\":\"10.1093/hr/uhae112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants primarily incorporate nitrate (NO<sub>3</sub> <sup>-</sup>) and ammonium (NH<sub>4</sub> <sup>+</sup>) as the primary source of inorganic nitrogen (N); the physiological mechanisms of photosynthesis (<i>A</i>) dropdown under NH<sub>4</sub> <sup>+</sup> nutrition has been investigated in many studies. Leaf anatomy is a major determinant to mesophyll conductance (<i>g</i> <sub>m</sub>) and photosynthesis; however, it remains unclear whether the photosynthesis variations of plants exposed to different N forms is related to leaf anatomical variation. In this work, a common shrub, <i>Lonicera japonica</i> was hydroponically grown under NH<sub>4</sub> <sup>+</sup>, NO<sub>3</sub> <sup>-</sup> and 50% NH<sub>4</sub> <sup>+</sup>/NO<sub>3</sub> <sup>-</sup>. We found that leaf N significantly accumulated under NH<sub>4</sub> <sup>+</sup>, whereas the photosynthesis was significantly decreased, which was mainly caused by a reduced <i>g</i> <sub>m</sub>. The reduced <i>g</i> <sub>m</sub> under NH<sub>4</sub> <sup>+</sup> was related to the decreased intercellular air space, the reduced chloroplast number and especially the thicker cell walls. Among the cell wall components, lignin and hemicellulose contents under NH<sub>4</sub> <sup>+</sup> nutrition were significantly higher than those in the other two N forms and were scaled negatively correlated with <i>g</i> <sub>m</sub>; while pectin content was independent from N forms. Pathway analysis further revealed that the cell wall components might indirectly regulate <i>g</i> <sub>m</sub> by influencing the thickness of the cell wall. These results highlight the importance of leaf anatomical variation characterized by modifications of chloroplasts number and cell wall thickness and compositions, in the regulation of photosynthesis in response to varied N sources.</p>\",\"PeriodicalId\":57479,\"journal\":{\"name\":\"园艺研究(英文)\",\"volume\":\"11 6\",\"pages\":\"uhae112\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197310/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"园艺研究(英文)\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://doi.org/10.1093/hr/uhae112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"园艺研究(英文)","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.1093/hr/uhae112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

植物主要以硝酸盐(NO3 -)和铵(NH4 +)作为无机氮(N)的主要来源;许多研究都对 NH4 + 营养条件下光合作用(A)下降的生理机制进行了调查。叶片解剖结构是叶绿体间传导率(g m)和光合作用的主要决定因素;然而,暴露于不同氮源的植物光合作用的变化是否与叶片解剖结构的变化有关,目前仍不清楚。本研究在 NH4 +、NO3 - 和 50% NH4 +/NO3 - 条件下水培常见灌木忍冬。我们发现,在 NH4 + 条件下,叶片氮明显增加,而光合作用明显降低,这主要是由于 g m 减少造成的。在细胞壁成分中,NH4 + 营养条件下的木质素和半纤维素含量明显高于其他两种营养条件下的含量,且与 g m 呈比例负相关;而果胶含量与营养条件无关。通路分析进一步表明,细胞壁成分可能通过影响细胞壁的厚度间接调节 g m。这些结果凸显了叶片解剖结构变化的重要性,其特点是叶绿体数量和细胞壁厚度及成分的改变,从而调节光合作用以应对不同的氮源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variation of mesophyll conductance mediated by nitrogen form is related to changes in cell wall property and chloroplast number.

Plants primarily incorporate nitrate (NO3 -) and ammonium (NH4 +) as the primary source of inorganic nitrogen (N); the physiological mechanisms of photosynthesis (A) dropdown under NH4 + nutrition has been investigated in many studies. Leaf anatomy is a major determinant to mesophyll conductance (g m) and photosynthesis; however, it remains unclear whether the photosynthesis variations of plants exposed to different N forms is related to leaf anatomical variation. In this work, a common shrub, Lonicera japonica was hydroponically grown under NH4 +, NO3 - and 50% NH4 +/NO3 -. We found that leaf N significantly accumulated under NH4 +, whereas the photosynthesis was significantly decreased, which was mainly caused by a reduced g m. The reduced g m under NH4 + was related to the decreased intercellular air space, the reduced chloroplast number and especially the thicker cell walls. Among the cell wall components, lignin and hemicellulose contents under NH4 + nutrition were significantly higher than those in the other two N forms and were scaled negatively correlated with g m; while pectin content was independent from N forms. Pathway analysis further revealed that the cell wall components might indirectly regulate g m by influencing the thickness of the cell wall. These results highlight the importance of leaf anatomical variation characterized by modifications of chloroplasts number and cell wall thickness and compositions, in the regulation of photosynthesis in response to varied N sources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信