Matthis Kurth, Mudassar Javed, Thomas Schliermann, Georg Brösigke, Susanne Kämnitz, Suresh K Bhatia, Jens-Uwe Repke
{"title":"纯氢和甲烷在碳基纳米多孔膜中的渗透:吸附等温线和渗透实验。","authors":"Matthis Kurth, Mudassar Javed, Thomas Schliermann, Georg Brösigke, Susanne Kämnitz, Suresh K Bhatia, Jens-Uwe Repke","doi":"10.3390/membranes14060123","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the results of adsorption and permeation experiments of hydrogen and methane at elevated temperatures on a carbon-based nanoporous membrane material provided by Fraunhofer IKTS. The adsorption of pure components was measured between 90 °C and 120°C and pressures up to 45 bar. The Langmuir adsorption isotherm shows the best fit for all data points. Compared to available adsorption isotherms of H<sub>2</sub> and CH<sub>4</sub> on carbon, the adsorption on the investigated nanoporous carbon structures is significantly lower. Single-component permeation experiments were conducted on membranes at temperatures up to 220 °C. After combining the experimental results with a Maxwell-Stefan surface diffusion model, Maxwell-Stefan surface diffusion coefficients Dis were calculated. The calculated values are in line with an empirical model and thus can be used in future multi-component modeling approaches in order to better analyze and design a membrane system. The published adsorption data fill a gap in the available adsorption data for CH<sub>4</sub> and H<sub>2</sub>.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 6","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11205412/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pure Hydrogen and Methane Permeation in Carbon-Based Nanoporous Membranes: Adsorption Isotherms and Permeation Experiments.\",\"authors\":\"Matthis Kurth, Mudassar Javed, Thomas Schliermann, Georg Brösigke, Susanne Kämnitz, Suresh K Bhatia, Jens-Uwe Repke\",\"doi\":\"10.3390/membranes14060123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents the results of adsorption and permeation experiments of hydrogen and methane at elevated temperatures on a carbon-based nanoporous membrane material provided by Fraunhofer IKTS. The adsorption of pure components was measured between 90 °C and 120°C and pressures up to 45 bar. The Langmuir adsorption isotherm shows the best fit for all data points. Compared to available adsorption isotherms of H<sub>2</sub> and CH<sub>4</sub> on carbon, the adsorption on the investigated nanoporous carbon structures is significantly lower. Single-component permeation experiments were conducted on membranes at temperatures up to 220 °C. After combining the experimental results with a Maxwell-Stefan surface diffusion model, Maxwell-Stefan surface diffusion coefficients Dis were calculated. The calculated values are in line with an empirical model and thus can be used in future multi-component modeling approaches in order to better analyze and design a membrane system. The published adsorption data fill a gap in the available adsorption data for CH<sub>4</sub> and H<sub>2</sub>.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"14 6\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11205412/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes14060123\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14060123","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Pure Hydrogen and Methane Permeation in Carbon-Based Nanoporous Membranes: Adsorption Isotherms and Permeation Experiments.
This paper presents the results of adsorption and permeation experiments of hydrogen and methane at elevated temperatures on a carbon-based nanoporous membrane material provided by Fraunhofer IKTS. The adsorption of pure components was measured between 90 °C and 120°C and pressures up to 45 bar. The Langmuir adsorption isotherm shows the best fit for all data points. Compared to available adsorption isotherms of H2 and CH4 on carbon, the adsorption on the investigated nanoporous carbon structures is significantly lower. Single-component permeation experiments were conducted on membranes at temperatures up to 220 °C. After combining the experimental results with a Maxwell-Stefan surface diffusion model, Maxwell-Stefan surface diffusion coefficients Dis were calculated. The calculated values are in line with an empirical model and thus can be used in future multi-component modeling approaches in order to better analyze and design a membrane system. The published adsorption data fill a gap in the available adsorption data for CH4 and H2.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.