Rachel A K Atkinson, Jessica M Collins, Jemeen Sreedharan, Anna E King, Carmen M Fernandez-Martos
{"title":"肌萎缩性脊髓侧索硬化症和额颞叶痴呆症死后人体组织中代谢激素的变化。","authors":"Rachel A K Atkinson, Jessica M Collins, Jemeen Sreedharan, Anna E King, Carmen M Fernandez-Martos","doi":"10.1093/jnen/nlae054","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic changes are observed in patients with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although regulation of metabolic processes in the CNS is predominantly carried out within the hypothalamus, extra-hypothalamic CNS areas contain metabolic hormone receptors, including those for leptin (LEPR), insulin (INSR), and neuropeptide Y (NPY), indicating that they may play a role in biological processes underlying pathogenic disease processes. The status of these hormones within regions vulnerable in ALS/FTD is not well described. This study sought to determine whether the expression of these hormones and their receptors is altered in pathology-rich regions in cases of human FTD (superior frontal gyrus and insular cortex) and ALS (primary motor cortex and lumbar spinal cord) with TDP-43 pathology compared to matched healthy controls. LEPR mRNA was increased within the superior frontal gyrus of FTD cases and within primary motor cortex and lumbar spinal cord of ALS cases; INSR mRNA was increased in superior frontal gyrus and insular cortex of FTD cases. NPY protein was decreased in primary motor cortex and lumbar spinal cord of ALS cases. Our results demonstrate that metabolic hormones undergo complex alterations in ALS and FTD and suggest that these hormones could play critical roles in the pathogenesis of these diseases.</p>","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487092/pdf/","citationCount":"0","resultStr":"{\"title\":\"Alterations to metabolic hormones in amyotrophic lateral sclerosis and frontotemporal dementia postmortem human tissue.\",\"authors\":\"Rachel A K Atkinson, Jessica M Collins, Jemeen Sreedharan, Anna E King, Carmen M Fernandez-Martos\",\"doi\":\"10.1093/jnen/nlae054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic changes are observed in patients with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although regulation of metabolic processes in the CNS is predominantly carried out within the hypothalamus, extra-hypothalamic CNS areas contain metabolic hormone receptors, including those for leptin (LEPR), insulin (INSR), and neuropeptide Y (NPY), indicating that they may play a role in biological processes underlying pathogenic disease processes. The status of these hormones within regions vulnerable in ALS/FTD is not well described. This study sought to determine whether the expression of these hormones and their receptors is altered in pathology-rich regions in cases of human FTD (superior frontal gyrus and insular cortex) and ALS (primary motor cortex and lumbar spinal cord) with TDP-43 pathology compared to matched healthy controls. LEPR mRNA was increased within the superior frontal gyrus of FTD cases and within primary motor cortex and lumbar spinal cord of ALS cases; INSR mRNA was increased in superior frontal gyrus and insular cortex of FTD cases. NPY protein was decreased in primary motor cortex and lumbar spinal cord of ALS cases. Our results demonstrate that metabolic hormones undergo complex alterations in ALS and FTD and suggest that these hormones could play critical roles in the pathogenesis of these diseases.</p>\",\"PeriodicalId\":16682,\"journal\":{\"name\":\"Journal of Neuropathology and Experimental Neurology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487092/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuropathology and Experimental Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jnen/nlae054\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuropathology and Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jnen/nlae054","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Alterations to metabolic hormones in amyotrophic lateral sclerosis and frontotemporal dementia postmortem human tissue.
Metabolic changes are observed in patients with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although regulation of metabolic processes in the CNS is predominantly carried out within the hypothalamus, extra-hypothalamic CNS areas contain metabolic hormone receptors, including those for leptin (LEPR), insulin (INSR), and neuropeptide Y (NPY), indicating that they may play a role in biological processes underlying pathogenic disease processes. The status of these hormones within regions vulnerable in ALS/FTD is not well described. This study sought to determine whether the expression of these hormones and their receptors is altered in pathology-rich regions in cases of human FTD (superior frontal gyrus and insular cortex) and ALS (primary motor cortex and lumbar spinal cord) with TDP-43 pathology compared to matched healthy controls. LEPR mRNA was increased within the superior frontal gyrus of FTD cases and within primary motor cortex and lumbar spinal cord of ALS cases; INSR mRNA was increased in superior frontal gyrus and insular cortex of FTD cases. NPY protein was decreased in primary motor cortex and lumbar spinal cord of ALS cases. Our results demonstrate that metabolic hormones undergo complex alterations in ALS and FTD and suggest that these hormones could play critical roles in the pathogenesis of these diseases.
期刊介绍:
Journal of Neuropathology & Experimental Neurology is the official journal of the American Association of Neuropathologists, Inc. (AANP). The journal publishes peer-reviewed studies on neuropathology and experimental neuroscience, book reviews, letters, and Association news, covering a broad spectrum of fields in basic neuroscience with an emphasis on human neurological diseases. It is written by and for neuropathologists, neurologists, neurosurgeons, pathologists, psychiatrists, and basic neuroscientists from around the world. Publication has been continuous since 1942.