Die Hu, Donglu Qin, Jie Kuang, Yang Yang, Shuwei Weng, Jin Chen, Sha Wu, Shuai Wang, Ling Mao, Daoquang Peng, Bilian Yu
{"title":"二甲双胍诱导的 PCSK9 抑制可进一步降低他汀类药物治疗后冠心病和非糖尿病患者的低密度脂蛋白胆固醇。","authors":"Die Hu, Donglu Qin, Jie Kuang, Yang Yang, Shuwei Weng, Jin Chen, Sha Wu, Shuai Wang, Ling Mao, Daoquang Peng, Bilian Yu","doi":"10.1097/FJC.0000000000001592","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>In vitro investigations have established metformin's capacity to downregulate proprotein convertase subtilisin/kexin type 9 (PCSK9) expression, suggesting a potential beneficial effect on atherogenic lipoprotein particles when combined with metformin therapy. Our objective was to assess whether metformin could mitigate statin-induced adverse effects on PCSK9, thereby improving lipid profiles in patients with coronary artery disease (CAD) but without diabetes. Employing an open-label, placebo-controlled, randomized trial, we randomized patients with CAD but without diabetes into CLA (cholesterol-lowering agents alone: atorvastatin ± ezetimibe, n = 38) and Met + CLA groups (metformin plus CLA, n = 33) in a 1:1 ratio. The primary end point was the therapeutic impact of 1-month metformin combination treatment on low-density lipoprotein cholesterol (LDL-C) and PCSK9 levels. Baseline LDL-C and PCSK9 levels were 76.18 mg·dL -1 and 80.54 ng·mL -1 , respectively. After 1 month, metformin significantly reduced LDL-C (-20.81%, P < 0.001), enabling 72% of patients to attain guideline-recommended LDL-C goals. Noteworthy reductions in PCSK9 levels (-15.03%, P < 0.001) were observed. Moreover, Met + CLA markedly reduced LDL particle number more than CLA alone (-10.65% vs. 1.45%, P = 0.009), primarily due to diminished small-dense LDL particle count. Mechanistically, our study demonstrated metformin's inhibition of statin-induced PCSK9 expression in human hepatocellular cells. In summary, a 1-month metformin combination regimen reduced LDL-C levels in patients with CAD but without diabetes by inhibiting PCSK9 expression.</p><p><strong>Trial registration: </strong>Chinese Clinical Trial Registry identifier: ChiCTR1900026925 (26/10/2019).</p>","PeriodicalId":15212,"journal":{"name":"Journal of Cardiovascular Pharmacology","volume":" ","pages":"261-269"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metformin-Induced Proprotein Convertase Subtilisin/Kexin Type 9 Inhibition Further Decreases Low-Density Lipoprotein Cholesterol Following Statin Treatment in Patients With Coronary Artery Disease and Without Diabetes.\",\"authors\":\"Die Hu, Donglu Qin, Jie Kuang, Yang Yang, Shuwei Weng, Jin Chen, Sha Wu, Shuai Wang, Ling Mao, Daoquang Peng, Bilian Yu\",\"doi\":\"10.1097/FJC.0000000000001592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>In vitro investigations have established metformin's capacity to downregulate proprotein convertase subtilisin/kexin type 9 (PCSK9) expression, suggesting a potential beneficial effect on atherogenic lipoprotein particles when combined with metformin therapy. Our objective was to assess whether metformin could mitigate statin-induced adverse effects on PCSK9, thereby improving lipid profiles in patients with coronary artery disease (CAD) but without diabetes. Employing an open-label, placebo-controlled, randomized trial, we randomized patients with CAD but without diabetes into CLA (cholesterol-lowering agents alone: atorvastatin ± ezetimibe, n = 38) and Met + CLA groups (metformin plus CLA, n = 33) in a 1:1 ratio. The primary end point was the therapeutic impact of 1-month metformin combination treatment on low-density lipoprotein cholesterol (LDL-C) and PCSK9 levels. Baseline LDL-C and PCSK9 levels were 76.18 mg·dL -1 and 80.54 ng·mL -1 , respectively. After 1 month, metformin significantly reduced LDL-C (-20.81%, P < 0.001), enabling 72% of patients to attain guideline-recommended LDL-C goals. Noteworthy reductions in PCSK9 levels (-15.03%, P < 0.001) were observed. Moreover, Met + CLA markedly reduced LDL particle number more than CLA alone (-10.65% vs. 1.45%, P = 0.009), primarily due to diminished small-dense LDL particle count. Mechanistically, our study demonstrated metformin's inhibition of statin-induced PCSK9 expression in human hepatocellular cells. In summary, a 1-month metformin combination regimen reduced LDL-C levels in patients with CAD but without diabetes by inhibiting PCSK9 expression.</p><p><strong>Trial registration: </strong>Chinese Clinical Trial Registry identifier: ChiCTR1900026925 (26/10/2019).</p>\",\"PeriodicalId\":15212,\"journal\":{\"name\":\"Journal of Cardiovascular Pharmacology\",\"volume\":\" \",\"pages\":\"261-269\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/FJC.0000000000001592\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FJC.0000000000001592","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Metformin-Induced Proprotein Convertase Subtilisin/Kexin Type 9 Inhibition Further Decreases Low-Density Lipoprotein Cholesterol Following Statin Treatment in Patients With Coronary Artery Disease and Without Diabetes.
Abstract: In vitro investigations have established metformin's capacity to downregulate proprotein convertase subtilisin/kexin type 9 (PCSK9) expression, suggesting a potential beneficial effect on atherogenic lipoprotein particles when combined with metformin therapy. Our objective was to assess whether metformin could mitigate statin-induced adverse effects on PCSK9, thereby improving lipid profiles in patients with coronary artery disease (CAD) but without diabetes. Employing an open-label, placebo-controlled, randomized trial, we randomized patients with CAD but without diabetes into CLA (cholesterol-lowering agents alone: atorvastatin ± ezetimibe, n = 38) and Met + CLA groups (metformin plus CLA, n = 33) in a 1:1 ratio. The primary end point was the therapeutic impact of 1-month metformin combination treatment on low-density lipoprotein cholesterol (LDL-C) and PCSK9 levels. Baseline LDL-C and PCSK9 levels were 76.18 mg·dL -1 and 80.54 ng·mL -1 , respectively. After 1 month, metformin significantly reduced LDL-C (-20.81%, P < 0.001), enabling 72% of patients to attain guideline-recommended LDL-C goals. Noteworthy reductions in PCSK9 levels (-15.03%, P < 0.001) were observed. Moreover, Met + CLA markedly reduced LDL particle number more than CLA alone (-10.65% vs. 1.45%, P = 0.009), primarily due to diminished small-dense LDL particle count. Mechanistically, our study demonstrated metformin's inhibition of statin-induced PCSK9 expression in human hepatocellular cells. In summary, a 1-month metformin combination regimen reduced LDL-C levels in patients with CAD but without diabetes by inhibiting PCSK9 expression.
Trial registration: Chinese Clinical Trial Registry identifier: ChiCTR1900026925 (26/10/2019).
期刊介绍:
Journal of Cardiovascular Pharmacology is a peer reviewed, multidisciplinary journal that publishes original articles and pertinent review articles on basic and clinical aspects of cardiovascular pharmacology. The Journal encourages submission in all aspects of cardiovascular pharmacology/medicine including, but not limited to: stroke, kidney disease, lipid disorders, diabetes, systemic and pulmonary hypertension, cancer angiogenesis, neural and hormonal control of the circulation, sepsis, neurodegenerative diseases with a vascular component, cardiac and vascular remodeling, heart failure, angina, anticoagulants/antiplatelet agents, drugs/agents that affect vascular smooth muscle, and arrhythmias.
Appropriate subjects include new drug development and evaluation, physiological and pharmacological bases of drug action, metabolism, drug interactions and side effects, application of drugs to gain novel insights into physiology or pathological conditions, clinical results with new and established agents, and novel methods. The focus is on pharmacology in its broadest applications, incorporating not only traditional approaches, but new approaches to the development of pharmacological agents and the prevention and treatment of cardiovascular diseases. Please note that JCVP does not publish work based on biological extracts of mixed and uncertain chemical composition or unknown concentration.