Lucas Ferioli Catelli, Péricles Natan Mendes da Costa, Felipe Augusto Rós, Evandra Strazza Rodrigues, Fernanda Ferreira Ursoli, Flávia Leite Souza Santos, Mayra Dorigan, Lílian Maria de Castilho, Dimas Tadeu Covas, Simone Kashima
{"title":"高度定义的诱导多能干细胞系模拟供体红细胞抗原谱,用于治疗和诊断。","authors":"Lucas Ferioli Catelli, Péricles Natan Mendes da Costa, Felipe Augusto Rós, Evandra Strazza Rodrigues, Fernanda Ferreira Ursoli, Flávia Leite Souza Santos, Mayra Dorigan, Lílian Maria de Castilho, Dimas Tadeu Covas, Simone Kashima","doi":"10.1089/cell.2024.0018","DOIUrl":null,"url":null,"abstract":"<p><p>Our group generated two induced pluripotent stem cell (iPSC) lines for <i>in vitro</i> red blood cell (RBC) production from blood donors with extensively known erythrocyte antigen profiles. One line was intended to give rise to RBCs for transfusions in patients with sickle cell disease (SCD), while the other was developed to create RBC panel reagents. Two blood donors were selected based on their RBC phenotypes, further complemented by high-throughput DNA array analysis to obtain a more comprehensive erythrocyte antigen profile. Enriched erythroblast populations from the donors' peripheral blood mononuclear cells were reprogrammed into iPSCs using nonintegrative plasmid vectors. The iPSC lines were characterized and subsequently subjected to hematopoietic differentiation. iPSC PB02 and iPSC PB12 demonstrated <i>in vitro</i> and <i>in vivo</i> iPSC features and retained the genotype of each blood donor's RBC antigen profile. Colony-forming cell assays confirmed that iPSC PB02 and iPSC PB12 generated hematopoietic progenitors. These two iPSC lines were generated with defined erythrocyte antigen profiles, self-renewal capacity, and hematopoietic differentiation potential. With improvements in hematopoietic differentiation, these cells could potentially be more efficiently differentiated into RBCs in the future. They could serve as a complementary approach for obtaining donor-independent RBCs and addressing specific demands for blood transfusions.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"26 3","pages":"107-115"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Defined Induced Pluripotent Stem Cell Lines Mimic Donor Red Blood Cell Antigen Profiles for Therapeutic and Diagnostic Use.\",\"authors\":\"Lucas Ferioli Catelli, Péricles Natan Mendes da Costa, Felipe Augusto Rós, Evandra Strazza Rodrigues, Fernanda Ferreira Ursoli, Flávia Leite Souza Santos, Mayra Dorigan, Lílian Maria de Castilho, Dimas Tadeu Covas, Simone Kashima\",\"doi\":\"10.1089/cell.2024.0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our group generated two induced pluripotent stem cell (iPSC) lines for <i>in vitro</i> red blood cell (RBC) production from blood donors with extensively known erythrocyte antigen profiles. One line was intended to give rise to RBCs for transfusions in patients with sickle cell disease (SCD), while the other was developed to create RBC panel reagents. Two blood donors were selected based on their RBC phenotypes, further complemented by high-throughput DNA array analysis to obtain a more comprehensive erythrocyte antigen profile. Enriched erythroblast populations from the donors' peripheral blood mononuclear cells were reprogrammed into iPSCs using nonintegrative plasmid vectors. The iPSC lines were characterized and subsequently subjected to hematopoietic differentiation. iPSC PB02 and iPSC PB12 demonstrated <i>in vitro</i> and <i>in vivo</i> iPSC features and retained the genotype of each blood donor's RBC antigen profile. Colony-forming cell assays confirmed that iPSC PB02 and iPSC PB12 generated hematopoietic progenitors. These two iPSC lines were generated with defined erythrocyte antigen profiles, self-renewal capacity, and hematopoietic differentiation potential. With improvements in hematopoietic differentiation, these cells could potentially be more efficiently differentiated into RBCs in the future. They could serve as a complementary approach for obtaining donor-independent RBCs and addressing specific demands for blood transfusions.</p>\",\"PeriodicalId\":9708,\"journal\":{\"name\":\"Cellular reprogramming\",\"volume\":\"26 3\",\"pages\":\"107-115\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular reprogramming\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/cell.2024.0018\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular reprogramming","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cell.2024.0018","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Highly Defined Induced Pluripotent Stem Cell Lines Mimic Donor Red Blood Cell Antigen Profiles for Therapeutic and Diagnostic Use.
Our group generated two induced pluripotent stem cell (iPSC) lines for in vitro red blood cell (RBC) production from blood donors with extensively known erythrocyte antigen profiles. One line was intended to give rise to RBCs for transfusions in patients with sickle cell disease (SCD), while the other was developed to create RBC panel reagents. Two blood donors were selected based on their RBC phenotypes, further complemented by high-throughput DNA array analysis to obtain a more comprehensive erythrocyte antigen profile. Enriched erythroblast populations from the donors' peripheral blood mononuclear cells were reprogrammed into iPSCs using nonintegrative plasmid vectors. The iPSC lines were characterized and subsequently subjected to hematopoietic differentiation. iPSC PB02 and iPSC PB12 demonstrated in vitro and in vivo iPSC features and retained the genotype of each blood donor's RBC antigen profile. Colony-forming cell assays confirmed that iPSC PB02 and iPSC PB12 generated hematopoietic progenitors. These two iPSC lines were generated with defined erythrocyte antigen profiles, self-renewal capacity, and hematopoietic differentiation potential. With improvements in hematopoietic differentiation, these cells could potentially be more efficiently differentiated into RBCs in the future. They could serve as a complementary approach for obtaining donor-independent RBCs and addressing specific demands for blood transfusions.
期刊介绍:
Cellular Reprogramming is the premier journal dedicated to providing new insights on the etiology, development, and potential treatment of various diseases through reprogramming cellular mechanisms. The Journal delivers information on cutting-edge techniques and the latest high-quality research and discoveries that are transforming biomedical research.
Cellular Reprogramming coverage includes:
Somatic cell nuclear transfer and reprogramming in early embryos
Embryonic stem cells
Nuclear transfer stem cells (stem cells derived from nuclear transfer embryos)
Generation of induced pluripotent stem (iPS) cells and/or potential for cell-based therapies
Epigenetics
Adult stem cells and pluripotency.