Ryan J. Bevan , Gloria Cimaglia , James E. Morgan , Philip R. Taylor
{"title":"改进的原位神经元 DiOlistic 标记技术:树突棘的详细可视化和固定组织中的同步组织化学检测。","authors":"Ryan J. Bevan , Gloria Cimaglia , James E. Morgan , Philip R. Taylor","doi":"10.1016/j.ymeth.2024.06.009","DOIUrl":null,"url":null,"abstract":"<div><p>DiOlistic labelling is a robust, unbiased ballistic method that utilises lipophilic dyes to morphologically label neurons. While its efficacy on freshly dissected tissue specimens is well-documented, applying DiOlistic labelling to stored, fixed brain tissue and its use in polychromatic multi-marker studies poses significant technical challenges. Here, we present an improved, step-by-step protocol for DiOlistic labelling of dendrites and dendritic spines in fixed mouse tissue. Our protocol encompasses the five key stages: Tissue Preparation, Dye Bullet Preparation, DiOlistic Labelling, Confocal Imaging, and Image Analysis. This method ensures reliable and consistent labelling of dendritic spines in fixed mouse tissue, combined with increased throughput of samples and multi-parameter staining and visualisation of tissue, thereby offering a valuable approach for neuroscientific research.</p></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"229 ","pages":"Pages 82-93"},"PeriodicalIF":4.2000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1046202324001592/pdfft?md5=3fb2134aac8eec5f280834e3c88b7545&pid=1-s2.0-S1046202324001592-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Improved DiOlistic labelling technique for neurons in situ: Detailed visualisation of dendritic spines and concurrent histochemical-detection in fixed tissue\",\"authors\":\"Ryan J. Bevan , Gloria Cimaglia , James E. Morgan , Philip R. Taylor\",\"doi\":\"10.1016/j.ymeth.2024.06.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>DiOlistic labelling is a robust, unbiased ballistic method that utilises lipophilic dyes to morphologically label neurons. While its efficacy on freshly dissected tissue specimens is well-documented, applying DiOlistic labelling to stored, fixed brain tissue and its use in polychromatic multi-marker studies poses significant technical challenges. Here, we present an improved, step-by-step protocol for DiOlistic labelling of dendrites and dendritic spines in fixed mouse tissue. Our protocol encompasses the five key stages: Tissue Preparation, Dye Bullet Preparation, DiOlistic Labelling, Confocal Imaging, and Image Analysis. This method ensures reliable and consistent labelling of dendritic spines in fixed mouse tissue, combined with increased throughput of samples and multi-parameter staining and visualisation of tissue, thereby offering a valuable approach for neuroscientific research.</p></div>\",\"PeriodicalId\":390,\"journal\":{\"name\":\"Methods\",\"volume\":\"229 \",\"pages\":\"Pages 82-93\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1046202324001592/pdfft?md5=3fb2134aac8eec5f280834e3c88b7545&pid=1-s2.0-S1046202324001592-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1046202324001592\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202324001592","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Improved DiOlistic labelling technique for neurons in situ: Detailed visualisation of dendritic spines and concurrent histochemical-detection in fixed tissue
DiOlistic labelling is a robust, unbiased ballistic method that utilises lipophilic dyes to morphologically label neurons. While its efficacy on freshly dissected tissue specimens is well-documented, applying DiOlistic labelling to stored, fixed brain tissue and its use in polychromatic multi-marker studies poses significant technical challenges. Here, we present an improved, step-by-step protocol for DiOlistic labelling of dendrites and dendritic spines in fixed mouse tissue. Our protocol encompasses the five key stages: Tissue Preparation, Dye Bullet Preparation, DiOlistic Labelling, Confocal Imaging, and Image Analysis. This method ensures reliable and consistent labelling of dendritic spines in fixed mouse tissue, combined with increased throughput of samples and multi-parameter staining and visualisation of tissue, thereby offering a valuable approach for neuroscientific research.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.