WyCryst:Wyckoff 无机晶体发生器框架

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2024-10-02 DOI:10.1016/j.matt.2024.05.042
{"title":"WyCryst:Wyckoff 无机晶体发生器框架","authors":"","doi":"10.1016/j.matt.2024.05.042","DOIUrl":null,"url":null,"abstract":"<div><div><span><span>Recent advancements in property-directed generative design of inorganic materials account for periodicity and global Euclidian symmetry through translations, rotations, and reflections; however, they do not account for symmetry constraints within allowed space groups. To address this, we introduce a generative design framework (WyCryst) composed of three components: (1) a Wyckoff position-based inorganic crystal representation, (2) a property-directed variational </span>autoencoder<span> (VAE) model, and (3) an automated density functional theory (DFT) workflow for structure refinement. Our framework selectively generates materials by encoding the Wyckoff representation for each space group. As validation, we reproduce a variety of existing materials, CaTiO</span></span><sub>3</sub>, CsPbI<sub>3</sub>, BaTiO<sub>3</sub>, and CuInS<sub>2</sub>, for both ground-state and polymorphic crystal structure predictions. We also generate several ternary materials not found in the training database, which are proven to retain their symmetry and are phononically stable using our automated DFT workflow. We believe our symmetry-aware WyCryst takes a vital step toward AI-driven inorganic materials discovery.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 10","pages":"Pages 3469-3488"},"PeriodicalIF":17.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WyCryst: Wyckoff inorganic crystal generator framework\",\"authors\":\"\",\"doi\":\"10.1016/j.matt.2024.05.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span><span>Recent advancements in property-directed generative design of inorganic materials account for periodicity and global Euclidian symmetry through translations, rotations, and reflections; however, they do not account for symmetry constraints within allowed space groups. To address this, we introduce a generative design framework (WyCryst) composed of three components: (1) a Wyckoff position-based inorganic crystal representation, (2) a property-directed variational </span>autoencoder<span> (VAE) model, and (3) an automated density functional theory (DFT) workflow for structure refinement. Our framework selectively generates materials by encoding the Wyckoff representation for each space group. As validation, we reproduce a variety of existing materials, CaTiO</span></span><sub>3</sub>, CsPbI<sub>3</sub>, BaTiO<sub>3</sub>, and CuInS<sub>2</sub>, for both ground-state and polymorphic crystal structure predictions. We also generate several ternary materials not found in the training database, which are proven to retain their symmetry and are phononically stable using our automated DFT workflow. We believe our symmetry-aware WyCryst takes a vital step toward AI-driven inorganic materials discovery.</div></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"7 10\",\"pages\":\"Pages 3469-3488\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590238524003059\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524003059","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近在无机材料属性定向生成设计方面取得的进展,通过平移、旋转和反射来考虑周期性和全局欧几里得对称性;然而,它们并没有考虑允许空间群内的对称性约束。为了解决这个问题,我们引入了一个生成式设计框架(WyCryst),由三个部分组成:(1) 基于 Wyckoff 位置的无机晶体表示法;(2) 以属性为导向的变异自动编码器 (VAE) 模型;(3) 用于结构细化的自动化密度泛函理论 (DFT) 工作流程。我们的框架通过对每个空间群的 Wyckoff 表示进行编码,选择性地生成材料。作为验证,我们在基态和多晶态晶体结构预测中重现了多种现有材料,包括 CaTiO3、CsPbI3、BaTiO3 和 CuInS2。我们还生成了几种训练数据库中没有的三元材料,使用我们的自动 DFT 工作流程,这些材料被证明保持了对称性和语音稳定性。我们相信,我们的对称感知 WyCryst 向人工智能驱动的无机材料发现迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

WyCryst: Wyckoff inorganic crystal generator framework

WyCryst: Wyckoff inorganic crystal generator framework

WyCryst: Wyckoff inorganic crystal generator framework
Recent advancements in property-directed generative design of inorganic materials account for periodicity and global Euclidian symmetry through translations, rotations, and reflections; however, they do not account for symmetry constraints within allowed space groups. To address this, we introduce a generative design framework (WyCryst) composed of three components: (1) a Wyckoff position-based inorganic crystal representation, (2) a property-directed variational autoencoder (VAE) model, and (3) an automated density functional theory (DFT) workflow for structure refinement. Our framework selectively generates materials by encoding the Wyckoff representation for each space group. As validation, we reproduce a variety of existing materials, CaTiO3, CsPbI3, BaTiO3, and CuInS2, for both ground-state and polymorphic crystal structure predictions. We also generate several ternary materials not found in the training database, which are proven to retain their symmetry and are phononically stable using our automated DFT workflow. We believe our symmetry-aware WyCryst takes a vital step toward AI-driven inorganic materials discovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信