Francesca Jaroszynska, Siri Lie Olsen, Ragnhild Gya, Kari Klanderud, Richard Telford, Vigdis Vandvik
{"title":"高寒草地植物功能群的相互作用随着气候变暖而加剧","authors":"Francesca Jaroszynska, Siri Lie Olsen, Ragnhild Gya, Kari Klanderud, Richard Telford, Vigdis Vandvik","doi":"10.1111/ecog.07018","DOIUrl":null,"url":null,"abstract":"<p>Plant–plant interactions regulate plant community structure and function. Shifts in these interactions due to global climate change, mediated through disproportional increases of certain species or functional groups, may strongly affect plant community properties. Still, we lack knowledge of community-level effects of climate-driven changes in biotic interactions. We examined plant community interactions by experimentally removing a dominant functional group, graminoids, in semi-natural grasslands in Southern Norway. To test whether the effect of graminoid removal varied with climate, the experiment was replicated across broad-scale temperature and precipitation gradients. To quantify community-level interactions across sites, we tested for changes in the remaining vascular community (i.e. forbs) cover, richness, evenness, and functional traits reflecting leaf-economic investment and plant size over five years. The effect of graminoid removal on forb community structure and functioning varied over time, and along the climate gradients. Forb cover increased in response to graminoid removal, especially at warmer sites. Species richness increased following removal irrespective of climate, whilst evenness increased under warmer and wetter conditions irrespective of removal. No climate or removal effect was found for species turnover. Functional trait responses varied along the precipitation gradient – compared to controls, forb mean SLA decreased in drier conditions after graminoid removal. Leaf thickness increased under cooler and drier conditions irrespective of removal. These community structure alterations demonstrate stronger competitive interactions between forbs and graminoids under warmer conditions, whilst functional trait responses indicate a facilitative effect of graminoids under drier conditions. This indicates that both competition and facilitation regulate plant communities, suggesting complexity when scaling from populations to communities. Finally, both temperature and precipitation determine the direction and intensity of biotic interactions, with ecosystem-wide implications for forb persistence and ecosystem functioning under future climates. Further work is needed to generalise the role of changing interactions in mediating community responses to climate change.</p>","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"2024 9","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07018","citationCount":"0","resultStr":"{\"title\":\"Plant functional group interactions intensify with warming in alpine grasslands\",\"authors\":\"Francesca Jaroszynska, Siri Lie Olsen, Ragnhild Gya, Kari Klanderud, Richard Telford, Vigdis Vandvik\",\"doi\":\"10.1111/ecog.07018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plant–plant interactions regulate plant community structure and function. Shifts in these interactions due to global climate change, mediated through disproportional increases of certain species or functional groups, may strongly affect plant community properties. Still, we lack knowledge of community-level effects of climate-driven changes in biotic interactions. We examined plant community interactions by experimentally removing a dominant functional group, graminoids, in semi-natural grasslands in Southern Norway. To test whether the effect of graminoid removal varied with climate, the experiment was replicated across broad-scale temperature and precipitation gradients. To quantify community-level interactions across sites, we tested for changes in the remaining vascular community (i.e. forbs) cover, richness, evenness, and functional traits reflecting leaf-economic investment and plant size over five years. The effect of graminoid removal on forb community structure and functioning varied over time, and along the climate gradients. Forb cover increased in response to graminoid removal, especially at warmer sites. Species richness increased following removal irrespective of climate, whilst evenness increased under warmer and wetter conditions irrespective of removal. No climate or removal effect was found for species turnover. Functional trait responses varied along the precipitation gradient – compared to controls, forb mean SLA decreased in drier conditions after graminoid removal. Leaf thickness increased under cooler and drier conditions irrespective of removal. These community structure alterations demonstrate stronger competitive interactions between forbs and graminoids under warmer conditions, whilst functional trait responses indicate a facilitative effect of graminoids under drier conditions. This indicates that both competition and facilitation regulate plant communities, suggesting complexity when scaling from populations to communities. Finally, both temperature and precipitation determine the direction and intensity of biotic interactions, with ecosystem-wide implications for forb persistence and ecosystem functioning under future climates. Further work is needed to generalise the role of changing interactions in mediating community responses to climate change.</p>\",\"PeriodicalId\":51026,\"journal\":{\"name\":\"Ecography\",\"volume\":\"2024 9\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07018\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ecog.07018\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ecog.07018","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Plant functional group interactions intensify with warming in alpine grasslands
Plant–plant interactions regulate plant community structure and function. Shifts in these interactions due to global climate change, mediated through disproportional increases of certain species or functional groups, may strongly affect plant community properties. Still, we lack knowledge of community-level effects of climate-driven changes in biotic interactions. We examined plant community interactions by experimentally removing a dominant functional group, graminoids, in semi-natural grasslands in Southern Norway. To test whether the effect of graminoid removal varied with climate, the experiment was replicated across broad-scale temperature and precipitation gradients. To quantify community-level interactions across sites, we tested for changes in the remaining vascular community (i.e. forbs) cover, richness, evenness, and functional traits reflecting leaf-economic investment and plant size over five years. The effect of graminoid removal on forb community structure and functioning varied over time, and along the climate gradients. Forb cover increased in response to graminoid removal, especially at warmer sites. Species richness increased following removal irrespective of climate, whilst evenness increased under warmer and wetter conditions irrespective of removal. No climate or removal effect was found for species turnover. Functional trait responses varied along the precipitation gradient – compared to controls, forb mean SLA decreased in drier conditions after graminoid removal. Leaf thickness increased under cooler and drier conditions irrespective of removal. These community structure alterations demonstrate stronger competitive interactions between forbs and graminoids under warmer conditions, whilst functional trait responses indicate a facilitative effect of graminoids under drier conditions. This indicates that both competition and facilitation regulate plant communities, suggesting complexity when scaling from populations to communities. Finally, both temperature and precipitation determine the direction and intensity of biotic interactions, with ecosystem-wide implications for forb persistence and ecosystem functioning under future climates. Further work is needed to generalise the role of changing interactions in mediating community responses to climate change.
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.