ΛCDM宇宙学中的星系形成

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
Joel R. Primack
{"title":"ΛCDM宇宙学中的星系形成","authors":"Joel R. Primack","doi":"10.1146/annurev-nucl-102622-023052","DOIUrl":null,"url":null,"abstract":"This is a golden age for galaxy formation: Existing and especially new telescopes are providing observations that challenge and illuminate rapidly improving theory and simulations. This review describes the formation of the cosmic web and the structure of the dark matter halos that provide the scaffolding of the Universe. It then summarizes how empirical models, semianalytic models, and hydrodynamic simulations attempt to account for key properties of the galaxy population, including the main sequence of star-forming galaxies, the inefficiency of star formation, the shape evolution and color bimodality of galaxies, and the phenomena that cause galaxies to quench their star formation. It concludes with a summary of observations that have challenged the cosmological constant cold dark matter (ΛCDM) paradigm of galaxy formation—including the Hubble and <jats:italic>S</jats:italic> <jats:sub>8</jats:sub> tensions, bright galaxies in the early Universe, an extragalactic background light mystery, missing satellite galaxies, the diversity of dwarf galaxies, the cusp–core problem, the too-big-to-fail problem, stellar clumps, planes of satellite galaxies, and galaxies without dark matter—and solutions that have been proposed.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galaxy Formation in ΛCDM Cosmology\",\"authors\":\"Joel R. Primack\",\"doi\":\"10.1146/annurev-nucl-102622-023052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is a golden age for galaxy formation: Existing and especially new telescopes are providing observations that challenge and illuminate rapidly improving theory and simulations. This review describes the formation of the cosmic web and the structure of the dark matter halos that provide the scaffolding of the Universe. It then summarizes how empirical models, semianalytic models, and hydrodynamic simulations attempt to account for key properties of the galaxy population, including the main sequence of star-forming galaxies, the inefficiency of star formation, the shape evolution and color bimodality of galaxies, and the phenomena that cause galaxies to quench their star formation. It concludes with a summary of observations that have challenged the cosmological constant cold dark matter (ΛCDM) paradigm of galaxy formation—including the Hubble and <jats:italic>S</jats:italic> <jats:sub>8</jats:sub> tensions, bright galaxies in the early Universe, an extragalactic background light mystery, missing satellite galaxies, the diversity of dwarf galaxies, the cusp–core problem, the too-big-to-fail problem, stellar clumps, planes of satellite galaxies, and galaxies without dark matter—and solutions that have been proposed.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-nucl-102622-023052\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-102622-023052","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

这是星系形成的黄金时代:现有的,特别是新的望远镜所提供的观测结果,对迅速改进的理论和模拟提出了挑战,也为其提供了启示。这篇综述描述了宇宙网的形成以及为宇宙提供支架的暗物质晕的结构。然后概述了经验模型、半解析模型和流体力学模拟如何试图解释星系群的关键特性,包括恒星形成星系的主序、恒星形成的低效率、星系的形状演化和颜色双峰性,以及导致星系熄灭恒星形成的现象。最后,它总结了对星系形成的宇宙常数冷暗物质(ΛCDM)范式提出质疑的观测结果--包括哈勃和S 8张力、早期宇宙中的明亮星系、银河系外背景光之谜、失踪的卫星星系、矮星系的多样性、尖核问题、大而不倒问题、恒星团块、卫星星系平面和没有暗物质的星系--以及提出的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Galaxy Formation in ΛCDM Cosmology
This is a golden age for galaxy formation: Existing and especially new telescopes are providing observations that challenge and illuminate rapidly improving theory and simulations. This review describes the formation of the cosmic web and the structure of the dark matter halos that provide the scaffolding of the Universe. It then summarizes how empirical models, semianalytic models, and hydrodynamic simulations attempt to account for key properties of the galaxy population, including the main sequence of star-forming galaxies, the inefficiency of star formation, the shape evolution and color bimodality of galaxies, and the phenomena that cause galaxies to quench their star formation. It concludes with a summary of observations that have challenged the cosmological constant cold dark matter (ΛCDM) paradigm of galaxy formation—including the Hubble and S 8 tensions, bright galaxies in the early Universe, an extragalactic background light mystery, missing satellite galaxies, the diversity of dwarf galaxies, the cusp–core problem, the too-big-to-fail problem, stellar clumps, planes of satellite galaxies, and galaxies without dark matter—and solutions that have been proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信