{"title":"ΛCDM宇宙学中的星系形成","authors":"Joel R. Primack","doi":"10.1146/annurev-nucl-102622-023052","DOIUrl":null,"url":null,"abstract":"This is a golden age for galaxy formation: Existing and especially new telescopes are providing observations that challenge and illuminate rapidly improving theory and simulations. This review describes the formation of the cosmic web and the structure of the dark matter halos that provide the scaffolding of the Universe. It then summarizes how empirical models, semianalytic models, and hydrodynamic simulations attempt to account for key properties of the galaxy population, including the main sequence of star-forming galaxies, the inefficiency of star formation, the shape evolution and color bimodality of galaxies, and the phenomena that cause galaxies to quench their star formation. It concludes with a summary of observations that have challenged the cosmological constant cold dark matter (ΛCDM) paradigm of galaxy formation—including the Hubble and <jats:italic>S</jats:italic> <jats:sub>8</jats:sub> tensions, bright galaxies in the early Universe, an extragalactic background light mystery, missing satellite galaxies, the diversity of dwarf galaxies, the cusp–core problem, the too-big-to-fail problem, stellar clumps, planes of satellite galaxies, and galaxies without dark matter—and solutions that have been proposed.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galaxy Formation in ΛCDM Cosmology\",\"authors\":\"Joel R. Primack\",\"doi\":\"10.1146/annurev-nucl-102622-023052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is a golden age for galaxy formation: Existing and especially new telescopes are providing observations that challenge and illuminate rapidly improving theory and simulations. This review describes the formation of the cosmic web and the structure of the dark matter halos that provide the scaffolding of the Universe. It then summarizes how empirical models, semianalytic models, and hydrodynamic simulations attempt to account for key properties of the galaxy population, including the main sequence of star-forming galaxies, the inefficiency of star formation, the shape evolution and color bimodality of galaxies, and the phenomena that cause galaxies to quench their star formation. It concludes with a summary of observations that have challenged the cosmological constant cold dark matter (ΛCDM) paradigm of galaxy formation—including the Hubble and <jats:italic>S</jats:italic> <jats:sub>8</jats:sub> tensions, bright galaxies in the early Universe, an extragalactic background light mystery, missing satellite galaxies, the diversity of dwarf galaxies, the cusp–core problem, the too-big-to-fail problem, stellar clumps, planes of satellite galaxies, and galaxies without dark matter—and solutions that have been proposed.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-nucl-102622-023052\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-102622-023052","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
This is a golden age for galaxy formation: Existing and especially new telescopes are providing observations that challenge and illuminate rapidly improving theory and simulations. This review describes the formation of the cosmic web and the structure of the dark matter halos that provide the scaffolding of the Universe. It then summarizes how empirical models, semianalytic models, and hydrodynamic simulations attempt to account for key properties of the galaxy population, including the main sequence of star-forming galaxies, the inefficiency of star formation, the shape evolution and color bimodality of galaxies, and the phenomena that cause galaxies to quench their star formation. It concludes with a summary of observations that have challenged the cosmological constant cold dark matter (ΛCDM) paradigm of galaxy formation—including the Hubble and S8 tensions, bright galaxies in the early Universe, an extragalactic background light mystery, missing satellite galaxies, the diversity of dwarf galaxies, the cusp–core problem, the too-big-to-fail problem, stellar clumps, planes of satellite galaxies, and galaxies without dark matter—and solutions that have been proposed.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.