在低磷供应条件下,不同的外生菌根真菌种类会影响杨树的生长,但不会影响磷的利用。

IF 3.5 2区 农林科学 Q1 FORESTRY
Huili Shi, Ulrike Lipka, Andrea Polle
{"title":"在低磷供应条件下,不同的外生菌根真菌种类会影响杨树的生长,但不会影响磷的利用。","authors":"Huili Shi, Ulrike Lipka, Andrea Polle","doi":"10.1093/treephys/tpae074","DOIUrl":null,"url":null,"abstract":"<p><p>Tree growth is often limited by phosphorus (P) availability. The trade-off between P homeostasis and growth is unknown. Ectomycorrhizal fungi (EMF) facilitate P availability but this trait varies among different fungal species and isolates. Here, we tested the hypotheses that (i) colonization with EMF boosts plant growth under P-limited conditions and that (ii) the poplars show P homeostasis because increased P uptake is used for growth and not for P accumulation in the tissues. We used two P treatments (high phosphate [HP]: 64 μM Pi, low phosphate [LP]: 0.64 μM Pi in the nutrient solution) and four fungal treatments (Paxillus involutus MAJ, Paxillus involutus NAU, Laccaria bicolor dikaryon LBD, Laccaria bicolor monokaryon LBM) in addition to non-inoculated poplar plants (NI) to measure growth, biomass, gas exchange and P contents. High phosphate (HP) stimulated growth compared with LP conditions. Poplars colonized with MAJ, NAU and NI showed higher growth and biomass production than those with LBD or LBM. Photosynthesis rates of poplars with lower biomass production were similar to or higher than those of plants with higher growth rates. The tissue concentrations of P were higher under HP than LP conditions and rarely affected by ectomycorrhizal colonization. Under LP, the plants produced 44% greater biomass per unit of P than under HP. At a given P supply, the tissue concentration was stable irrespective of the growth rate indicating P homeostasis. Laccaria bicolor caused growth inhibition, irrespective of P availability. These results suggest that in young poplars distinct species-specific ectomycorrhizal traits overshadowed potential growth benefits.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Different ectomycorrhizal fungal species impact poplar growth but not phosphorus utilization under low P supply.\",\"authors\":\"Huili Shi, Ulrike Lipka, Andrea Polle\",\"doi\":\"10.1093/treephys/tpae074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tree growth is often limited by phosphorus (P) availability. The trade-off between P homeostasis and growth is unknown. Ectomycorrhizal fungi (EMF) facilitate P availability but this trait varies among different fungal species and isolates. Here, we tested the hypotheses that (i) colonization with EMF boosts plant growth under P-limited conditions and that (ii) the poplars show P homeostasis because increased P uptake is used for growth and not for P accumulation in the tissues. We used two P treatments (high phosphate [HP]: 64 μM Pi, low phosphate [LP]: 0.64 μM Pi in the nutrient solution) and four fungal treatments (Paxillus involutus MAJ, Paxillus involutus NAU, Laccaria bicolor dikaryon LBD, Laccaria bicolor monokaryon LBM) in addition to non-inoculated poplar plants (NI) to measure growth, biomass, gas exchange and P contents. High phosphate (HP) stimulated growth compared with LP conditions. Poplars colonized with MAJ, NAU and NI showed higher growth and biomass production than those with LBD or LBM. Photosynthesis rates of poplars with lower biomass production were similar to or higher than those of plants with higher growth rates. The tissue concentrations of P were higher under HP than LP conditions and rarely affected by ectomycorrhizal colonization. Under LP, the plants produced 44% greater biomass per unit of P than under HP. At a given P supply, the tissue concentration was stable irrespective of the growth rate indicating P homeostasis. Laccaria bicolor caused growth inhibition, irrespective of P availability. These results suggest that in young poplars distinct species-specific ectomycorrhizal traits overshadowed potential growth benefits.</p>\",\"PeriodicalId\":23286,\"journal\":{\"name\":\"Tree physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tree physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/treephys/tpae074\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpae074","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

树木的生长往往受到磷(P)供应的限制。磷平衡与生长之间的权衡关系尚不清楚。外生菌根(EM)真菌有利于磷的供应,但这一特性在不同的真菌种类和分离物之间存在差异。在此,我们测试了以下假设:(i) EMF 的定殖可促进植物在 P 有限条件下的生长;(ii) 杨树表现出 P 平衡,因为增加的 P 吸收用于生长,而不是组织中的 P 积累。除了未接种的杨树植株(NI)外,我们还使用了两种钾处理(HP:64 μM Pi;LP:营养液中含有 0.64 μM Pi)和四种真菌处理(内卷毛孢菌 MAJ、内卷毛孢菌 NAU、Laccaria bicolor dikaryon LBD、Laccaria bicolor monokaryon LBM)来测量生长、生物量、气体交换和钾含量。与 LP 条件相比,HP 能促进生长。接种了 MAJ、NAU 和 NI 的杨树比接种了 LBD 或 LBM 的杨树表现出更高的生长和生物量。生物量产量较低的杨树的光合作用速率与生长速率较高的植物相似或更高。在 HP 条件下,组织中 P 的浓度高于 LP 条件下,并且很少受到外生菌根定殖的影响。在低浓度条件下,植物单位钾的生物量比高浓度条件下高 44%。在给定的钾供应量下,无论生长速度如何,组织浓度都很稳定,这表明钾平衡。而 L. bicolor 则会抑制生长,与钾的供应量无关。这些结果表明,在杨树幼苗中,不同物种特有的外生菌根特性掩盖了潜在的生长益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Different ectomycorrhizal fungal species impact poplar growth but not phosphorus utilization under low P supply.

Tree growth is often limited by phosphorus (P) availability. The trade-off between P homeostasis and growth is unknown. Ectomycorrhizal fungi (EMF) facilitate P availability but this trait varies among different fungal species and isolates. Here, we tested the hypotheses that (i) colonization with EMF boosts plant growth under P-limited conditions and that (ii) the poplars show P homeostasis because increased P uptake is used for growth and not for P accumulation in the tissues. We used two P treatments (high phosphate [HP]: 64 μM Pi, low phosphate [LP]: 0.64 μM Pi in the nutrient solution) and four fungal treatments (Paxillus involutus MAJ, Paxillus involutus NAU, Laccaria bicolor dikaryon LBD, Laccaria bicolor monokaryon LBM) in addition to non-inoculated poplar plants (NI) to measure growth, biomass, gas exchange and P contents. High phosphate (HP) stimulated growth compared with LP conditions. Poplars colonized with MAJ, NAU and NI showed higher growth and biomass production than those with LBD or LBM. Photosynthesis rates of poplars with lower biomass production were similar to or higher than those of plants with higher growth rates. The tissue concentrations of P were higher under HP than LP conditions and rarely affected by ectomycorrhizal colonization. Under LP, the plants produced 44% greater biomass per unit of P than under HP. At a given P supply, the tissue concentration was stable irrespective of the growth rate indicating P homeostasis. Laccaria bicolor caused growth inhibition, irrespective of P availability. These results suggest that in young poplars distinct species-specific ectomycorrhizal traits overshadowed potential growth benefits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tree physiology
Tree physiology 农林科学-林学
CiteScore
7.10
自引率
7.50%
发文量
133
审稿时长
1 months
期刊介绍: Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信